思维链提示(Chain of Thought, CoT)是一种通过引导大型语言模型(LLM)生成中间推理步骤来提高复杂问题解决能力的技术。与传统的直接提问相比,思维链提示要求模型在给出最终答案之前,先展示其思考过程。这种方法最早由Wei等人在2022年的论文中提出,实验表明,思维链提示可以显著提升模型在算术、常识推理和符号操作等任务上的表现。
在LangChain框架中,思维链提示被进一步抽象为一种可组合的组件,通过将多个提示和模型调用连接成一个链条,实现更复杂的推理流程。这种设计使得开发者可以构建模块化的应用,每个模块专注于特定类型的推理或转换。
思维链提示的核心价值在于它能够:
提升模型推理能力:通过显式地生成中间步骤,模型可以更好地组织复杂问题的解决过程,减少思维跳跃和错误。
增强答案可解释性:中间推理步骤为最终答案提供了依据,使用户能够理解模型的决策过程。
支持复杂任务分解:思维链提示允许将复杂问题分解为一系列简单子问题,每个子问题可以由专门的模型或工具处理。
实现知识密集型推理:在需要外部知识的任务中,思维链可以引导模型检索和整合相关信息。
LangChain在原始思维链提示的基础上进行了多方面的扩展:
模块化设计:将思维链拆分为多个可复用的组件,包括提示模板、模型调用、工具使用和输出解析器。
动态推理路径:支持根据输入内容动态选择推理步骤,而不是固定的线性流程。
工具集成:允许模型在推理过程中调用外部工具,如搜索引擎、计算器或数据库。
记忆机制:通过引入记忆组件,支持在多轮对话中保持上下文连贯性。
异步执行:优化了思维链的执行流程,支持并行和异步处理多个推理步骤。
这些扩展使得LangChain能够构建更复杂、更灵活的思维链应用,适用于各种不同的场景和任务。
LangChain的架构围绕几个核心组件构建,这些组件共同支持思维链提示的实现:
Models:支持多种语言模型,包括OpenAI、Hugging Face等提供商的模型。
Prompts:提示模板管理,包括变量注入、示例选择和格式控制。
Indexes:文档索引和检索,用于知识密集型任务。
Chains:将多个组件连接成一个有向图,实现复杂的推理流程。
Agents:基于模型决策动态选择和执行工具,实现自主推理。
Memory:管理对话历史和中间状态,支持上下文感知的交互。
这些组件通过统一的接口和数据结构相互协作,形成了LangChain强大的灵活性和可扩展性。
在一个典型的LangChain应用中,组件的交互流程如下:
用户输入通过提示模板进行格式化,可能包含变量替换和示例添加。
格式化后的提示被传递给语言模型进行处理。
模型输出可能被解析器处理,提取结构化信息。
解析后的输出可能作为下一个链环节的输入,触发新的模型调用或工具使用。
整个过程中的中间状态和历史记录可能被记忆组件管理和维护。
最终结果被返回给用户。
这种模块化的设计使得开发者可以根据具体需求灵活组合和配置组件,构建定制化的思维链应用。
在LangChain的源码中,有几个关键的抽象类和接口支撑着整个架构:
# langchain/schema.py 中的核心接口定义
class BaseLanguageModel(ABC):
"""所有语言模型的基类,定义了与模型交互的基本接口"""
@abstractmethod
def generate(self, prompts: List[str], stop: Optional[List[str]] = None) -> LLMResult:
"""生成文本的核心方法"""
pass
@abstractmethod
async def agenerate(self, prompts: List[str], stop: Optional[List[str]] = None) -> LLMResult:
"""异步生成文本的方法"""
pass
class BasePromptTemplate(ABC):
"""提示模板的基类,定义了提示构建的接口"""
@abstractmethod
def format(self, **kwargs: Any) -> str:
"""根据输入变量格式化提示"""
pass
@property
@abstractmethod
def input_variables(self) -> List[str]:
"""返回提示模板期望的输入变量列表"""
pass
class BaseChain(ABC):
"""链的基类,定义了链式处理的接口"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""返回链期望的输入键"""
pass
@property
@abstractmethod
def output_keys(self) -> List[str]:
"""返回链产生的输出键"""
pass
@abstractmethod
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""链的核心处理逻辑"""
pass
@abstractmethod
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""链的异步处理逻辑"""
pass
class BaseMemory(ABC):
"""记忆的基类,定义了记忆管理的接口"""
@property
@abstractmethod
def memory_variables(self) -> List[str]:
"""返回记忆中存储的变量名称"""
pass
@abstractmethod
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""加载记忆变量"""
pass
@abstractmethod
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
"""保存上下文到记忆中"""
pass
这些抽象类为LangChain的各个组件提供了统一的接口,使得不同的实现可以无缝替换和组合。
在LangChain中,思维链提示的设计遵循几种常见模式:
# 显式思维步骤提示示例
EXAMPLE_PROMPT = PromptTemplate(
input_variables=["question"],
template="""回答以下问题,展示你的思考过程:
问题:{question}
思考过程:"""
)
# 少样本学习提示示例
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
examples = [
{
"question": "一个数的3倍加上5等于20,这个数是多少?",
"thoughts": "首先,设这个数为x。根据题意,可以列出方程3x + 5 = 20。接下来,解方程:3x = 20 - 5 = 15,所以x = 15 / 3 = 5。",
"answer": "这个数是5。"
}
]
example_prompt = PromptTemplate(
input_variables=["question", "thoughts", "answer"],
template="问题:{question}\n思考过程:{thoughts}\n答案:{answer}"
)
few_shot_prompt = FewShotPromptTemplate(
examples=examples,
example_prompt=example_prompt,
prefix="回答以下问题,展示你的思考过程:",
suffix="问题:{question}\n思考过程:",
input_variables=["question"]
)
# 结构化输出提示示例
STRUCTURED_PROMPT = PromptTemplate(
input_variables=["question"],
template="""回答以下问题,按照"步骤1: ...\n步骤2: ...\n最终答案: ..."的格式展示你的思考过程:
问题:{question}
步骤1:"""
)
LangChain通过Chain
类实现思维链的链式调用。一个基本的思维链可以由多个子链组成,每个子链负责特定的推理步骤。
# 思维链的基本实现
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
# 定义第一个推理步骤的提示模板
step1_prompt = PromptTemplate(
input_variables=["question"],
template="""分析以下问题,确定解决问题所需的关键信息:
问题:{question}
关键信息:"""
)
# 定义第二个推理步骤的提示模板
step2_prompt = PromptTemplate(
input_variables=["question", "key_info"],
template="""使用以下关键信息解决问题:
问题:{question}
关键信息:{key_info}
解决方案:"""
)
# 初始化语言模型
llm = OpenAI(temperature=0)
# 创建第一个链
step1_chain = LLMChain(llm=llm, prompt=step1_prompt, output_key="key_info")
# 创建第二个链
step2_chain = LLMChain(llm=llm, prompt=step2_prompt, output_key="solution")
# 组合两个链形成思维链
from langchain.chains import SequentialChain
thought_chain = SequentialChain(
chains=[step1_chain, step2_chain],
input_variables=["question"],
output_variables=["key_info", "solution"],
verbose=True
)
LangChain还支持动态思维链,即根据输入内容动态选择推理路径。这通过RouterChain
实现。
# 动态思维链示例
from langchain.chains.router import MultiPromptChain
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.prompts import PromptTemplate
# 定义不同类型问题的提示模板
math_prompt = PromptTemplate(
template="""你是一个优秀的数学家。请解决以下数学问题:
{input}
解决方案:""",
input_variables=["input"]
)
history_prompt = PromptTemplate(
template="""你是一位历史专家。请回答以下历史问题:
{input}
答案:""",
input_variables=["input"]
)
# 定义路由提示
router_template = """给定一个问题,判断它是数学问题还是历史问题。
仅返回"math"或"history"。
问题:{input}
"""
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"]
)
# 初始化路由链
router_chain = LLMRouterChain.from_llm(
llm,
router_prompt,
output_parser=RouterOutputParser()
)
# 定义可用的链
destination_chains = {
"math": LLMChain(llm=llm, prompt=math_prompt),
"history": LLMChain(llm=llm, prompt=history_prompt)
}
# 创建多提示链
dynamic_chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=destination_chains["history"], # 默认使用历史链
verbose=True
)
LangChain允许思维链在推理过程中调用外部工具,这通过Agent
类实现。
# 思维链与工具集成示例
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent
from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, LLMChain
from typing import List, Union, Dict, Any
# 定义工具
def get_weather(city: str) -> str:
"""获取指定城市的天气信息"""
# 实际实现中可能会调用天气API
return f"在{city},天气晴朗,温度25摄氏度。"
tools = [
Tool(
name="WeatherTool",
func=get_weather,
description="获取指定城市的当前天气信息"
)
]
# 定义代理提示模板
template = """回答以下问题,你可以使用以下工具:
{tools}
使用以下格式:
问题:用户问题
思考:我应该使用什么工具来解决这个问题?
行动:工具名称[输入]
观察:工具返回的结果
...(这个思考/行动/观察可以重复多次)
思考:我现在知道最终答案
最终答案:对用户问题的最终回答
现在开始:
问题:{input}
{agent_scratchpad}"""
class CustomPromptTemplate(StringPromptTemplate):
template: str
tools: List[Tool]
def format(self, **kwargs) -> str:
# 获取中间步骤(如果有)
intermediate_steps = kwargs.pop("intermediate_steps", [])
thoughts = ""
observations = ""
# 构建思考和观察字符串
for action, observation in intermediate_steps:
thoughts += f"思考:我应该使用什么工具来解决这个问题?\n"
thoughts += f"行动:{action.tool}[{action.tool_input}]\n"
observations += f"观察:{observation}\n"
# 设置代理草稿垫
kwargs["agent_scratchpad"] = thoughts + observations
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
return self.template.format(**kwargs)
# 创建提示模板
prompt = CustomPromptTemplate(
template=template,
tools=tools,
input_variables=["input", "intermediate_steps"]
)
# 初始化代理
llm = OpenAI(temperature=0)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# 定义可用行动
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=None, # 简化示例,实际应用中需要一个输出解析器
stop=["\n观察:"],
allowed_tools=tool_names
)
# 创建代理执行器
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True
)
在LangChain中,提示工程是优化思维链性能的关键环节。以下是几种常见的提示优化技术:
# 智能示例选择
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
# 创建示例选择器
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples, # 示例列表
OpenAIEmbeddings(), # 嵌入模型
Chroma, # 向量存储
k=2 # 选择最相似的2个示例
)
# 创建基于相似性的少样本提示
similarity_prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
prefix="回答以下问题,展示你的思考过程:",
suffix="问题:{question}\n思考过程:",
input_variables=["question"]
)
# 动态提示构建示例
def build_prompt(question: str) -> str:
"""根据问题类型动态构建提示"""
if "数学" in question or "计算" in question:
return f"你是一个数学家。请解决以下数学问题:\n{question}\n解决方案步骤:"
elif "历史" in question or "什么时候" in question:
return f"你是一位历史专家。请回答以下历史问题:\n{question}\n回答:"
else:
return f"请回答以下问题:\n{question}\n思考过程:"
# 元提示示例
META_PROMPT = """你是一个能够解决各种问题的智能助手。
当回答问题时,请遵循以下指南:
1. 首先分析问题,确定解决问题所需的关键信息。
2. 然后逐步展示你的思考过程。
3. 使用适当的工具(如果可用)来获取必要的信息。
4. 最后给出明确的答案。
现在请回答以下问题:
{question}
分析:"""
选择合适的模型并进行微调也是优化思维链的重要手段:
# 模型选择示例
def select_model(task: str) -> BaseLanguageModel:
"""根据任务类型选择合适的模型"""
if task == "complex_reasoning":
return OpenAI(model_name="gpt-4", temperature=0)
elif task == "moderate_reasoning":
return OpenAI(model_name="gpt-3.5-turbo", temperature=0)
else:
return OpenAI(model_name="text-ada-001", temperature=0.7)
# 模型参数调优示例
llm = OpenAI(
temperature=0.2, # 较低的温度用于确定性任务
max_tokens=2000, # 增加最大生成长度以容纳复杂推理
top_p=0.9, # 控制采样的概率质量
frequency_penalty=0.1, # 降低重复生成的可能性
presence_penalty=0.1 # 鼓励生成新的内容
)
# 模型集成示例
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
# 初始化多个模型
llm1 = OpenAI(model_name="gpt-3.5-turbo")
llm2 = OpenAI(model_name="text-davinci-003")
# 定义不同模型的链
chain1 = LLMChain(
llm=llm1,
prompt=PromptTemplate(
input_variables=["question"],
template="请使用第一性原理思考以下问题:{question}\n思考过程:"
)
)
chain2 = LLMChain(
llm=llm2,
prompt=PromptTemplate(
input_variables=["question"],
template="请使用类比法思考以下问题:{question}\n思考过程:"
)
)
# 集成两个链的结果
def integrate_results(question: str) -> str:
result1 = chain1.run(question)
result2 = chain2.run(question)
# 合并两个结果
return f"基于第一性原理的思考:{result1}\n基于类比法的思考:{result2}\n综合结论:..."
优化思维链的推理路径可以提高效率和准确性:
# 推理路径剪枝示例
def should_continue(path: List[str], intermediate_result: str) -> bool:
"""决定是否继续当前推理路径"""
# 如果中间结果包含特定关键词,停止进一步推理
if "不需要进一步分析" in intermediate_result:
return False
# 如果路径太长,可能需要剪枝
if len(path) > 5:
return False
return True
# 并行推理示例
import asyncio
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
async def run_step(chain: LLMChain, input: str) -> str:
"""异步运行链步骤"""
return await chain.arun(input)
async def parallel_reasoning(question: str) -> Dict[str, str]:
"""并行执行多个推理步骤"""
# 初始化链
llm = OpenAI()
chain1 = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["question"],
template="分析以下问题的数学方面:{question}\n数学分析:"
)
)
chain2 = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["question"],
template="分析以下问题的历史背景:{question}\n历史分析:"
)
)
# 并行运行链
math_task = asyncio.create_task(run_step(chain1, question))
history_task = asyncio.create_task(run_step(chain2, question))
# 等待所有任务完成
math_result, history_result = await asyncio.gather(math_task, history_task)
return {
"math_analysis": math_result,
"history_analysis": history_result
}
# 自适应推理深度示例
def determine_reasoning_depth(question: str) -> int:
"""根据问题复杂度确定推理深度"""
# 简单启发式:问题长度与深度成正比
base_depth = 3
length_factor = len(question) // 100
# 检查问题中的关键词
if "复杂" in question or "详细" in question:
complexity_factor = 2
elif "简单" in question or "简要" in question:
complexity_factor = -1
else:
complexity_factor = 0
# 计算最终深度,确保在合理范围内
depth = base_depth + length_factor + complexity_factor
return max(1, min(10, depth))
LangChain通过Agent
框架实现思维链与外部工具的集成。工具调用机制的核心是让模型能够自主决定何时以及如何使用工具。
# 工具调用的核心实现
class AgentExecutor(BaseChain):
"""执行代理的链"""
agent: BaseAgent
tools: List[Tool]
max_iterations: Optional[int] = 15
early_stopping_method: str = "force"
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 初始化代理状态
intermediate_steps: List[Tuple[AgentAction, str]] = []
output_key = self.agent.return_values[0]
# 获取代理的初始输入
agent_inputs = inputs.copy()
# 移除可能由代理自行管理的输出键
agent_inputs.pop(output_key, None)
# 获取工具名称列表
tool_names = [tool.name for tool in self.tools]
# 主循环
while True:
# 检查是否达到最大迭代次数
if self.max_iterations is not None and len(intermediate_steps) >= self.max_iterations:
# 处理早停逻辑
if self.early_stopping_method == "force":
# 强制返回最终答案
final_output = self.agent.return_stopped_response(
early_stopping_method=self.early_stopping_method,
intermediate_steps=intermediate_steps,
**agent_inputs
)
return {output_key: final_output}
else:
raise ValueError(f"达到最大迭代次数: {self.max_iterations}")
# 获取代理的下一个行动
actions = self.agent.plan(
intermediate_steps,
**agent_inputs
)
# 处理多个行动(尽管大多数代理只返回一个行动)
for action in actions:
if action.name == "FinalAnswer":
# 如果代理返回最终答案,直接返回
return {output_key: action.tool_input}
# 查找并执行工具
tool = next((t for t in self.tools if t.name == action.name), None)
if tool is None:
observation = f"错误: 工具 '{action.name}' 未找到。可用工具: {', '.join(tool_names)}"
else:
# 执行工具
observation = tool.run(action.tool_input)
# 记录中间步骤
intermediate_steps.append((action, observation))
为了让模型能够有效使用工具,LangChain提供了工具注册表和发现机制。
# 工具注册表实现
class ToolRegistry:
"""工具注册表,用于注册和发现工具"""
def __init__(self):
self.tools = {}
def register_tool(self, name: str, tool: Tool) -> None:
"""注册工具"""
self.tools[name] = tool
def get_tool(self, name: str) -> Optional[Tool]:
"""获取工具"""
return self.tools.get(name)
def get_all_tools(self) -> List[Tool]:
"""获取所有工具"""
return list(self.tools.values())
def get_tool_names(self) -> List[str]:
"""获取所有工具名称"""
return list(self.tools.keys())
def get_tools_by_categories(self, categories: List[str]) -> List[Tool]:
"""根据类别获取工具"""
# 假设每个工具都有一个categories属性
return [tool for tool in self.tools.values()
if any(category in getattr(tool, 'categories', []) for category in categories)]
# 创建全局工具注册表
global_tool_registry = ToolRegistry()
# 注册一些常用工具
def register_common_tools():
"""注册常用工具"""
# 数学计算工具
global_tool_registry.register_tool(
"Calculator",
Tool(
name="Calculator",
func=lambda x: str(eval(x)),
description="用于执行数学计算,输入应为有效的数学表达式"
)
)
# 日期工具
global_tool_registry.register_tool(
"DateTool",
Tool(
name="DateTool",
func=lambda _: str(datetime.datetime.now().date()),
description="用于获取当前日期,无需输入"
)
)
# 添加更多工具...
在实际应用中,工具调用需要考虑安全性,避免执行危险操作。
# 安全工具包装器
class SafeToolWrapper:
"""安全工具包装器,确保工具调用的安全性"""
def __init__(self, tool: Tool, allowed_input_patterns: Optional[List[str]] = None):
self.tool = tool
self.allowed_input_patterns = allowed_input_patterns or []
def run(self, tool_input: str) -> str:
"""安全地运行工具"""
# 检查输入是否符合安全模式
if self.allowed_input_patterns:
is_safe = any(re.match(pattern, tool_input) for pattern in self.allowed_input_patterns)
if not is_safe:
return f"错误: 输入 '{tool_input}' 不符合安全模式,禁止执行。"
# 执行工具
try:
# 限制工具执行时间
with timeout_decorator.timeout(10): # 10秒超时
return self.tool.run(tool_input)
except Exception as e:
return f"错误: 工具执行失败: {str(e)}"
# 安全工具注册表
class SafeToolRegistry(ToolRegistry):
"""安全工具注册表,提供安全的工具调用"""
def get_safe_tool(self, name: str, allowed_input_patterns: Optional[List[str]] = None) -> Optional[Tool]:
"""获取安全工具"""
tool = self.get_tool(name)
if tool:
return Tool(
name=tool.name,
func=SafeToolWrapper(tool, allowed_input_patterns).run,
description=tool.description
)
return None
LangChain支持将多个工具组合成一个工具链,形成更复杂的功能。
# 工具链实现
class ToolChain(Tool):
"""将多个工具链接在一起形成一个复合工具"""
def __init__(self, name: str, description: str, tools: List[Tool], chain_steps: List[Dict]):
"""
初始化工具链
参数:
name: 工具链名称
description: 工具链描述
tools: 组成工具链的工具列表
chain_steps: 链步骤配置,每个步骤指定使用的工具和如何处理输出
"""
super().__init__(
name=name,
func=self._run_chain,
description=description
)
self.tools = tools
self.chain_steps = chain_steps
self.tool_map = {tool.name: tool for tool in tools}
def _run_chain(self, input: str) -> str:
"""执行工具链"""
current_input = input
intermediate_results = {}
for step in self.chain_steps:
tool_name = step["tool"]
tool = self.tool_map.get(tool_name)
if not tool:
return f"错误: 工具 '{tool_name}' 未找到"
# 准备工具输入
tool_input = step.get("input_mapper", lambda x: x)(current_input)
# 执行工具
result = tool.run(tool_input)
# 存储中间结果
intermediate_key = step.get("output_key", tool_name)
intermediate_results[intermediate_key] = result
# 更新当前输入
if "output_processor" in step:
current_input = step["output_processor"](result, intermediate_results)
else:
current_input = result
return current_input
在多轮对话和复杂推理任务中,记忆是保持上下文连贯性的关键。LangChain提供了多种记忆实现,支持不同类型的上下文管理。
# 记忆接口定义
class BaseMemory(ABC):
"""记忆的基类,定义了记忆管理的接口"""
@property
@abstractmethod
def memory_variables(self) -> List[str]:
"""返回记忆中存储的变量名称"""
pass
@abstractmethod
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""加载记忆变量"""
pass
@abstractmethod
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
"""保存上下文到记忆中"""
pass
@abstractmethod
def clear(self) -> None:
"""清除记忆"""
pass
最简单的记忆实现是基于字典的缓冲区,存储最近的对话历史。
# 简单对话记忆实现
class ConversationBufferMemory(BaseMemory):
"""存储对话历史的简单记忆"""
def __init__(self, memory_key: str = "history", input_key: Optional[str] = None):
self.buffer = []
self.memory_key = memory_key
self.input_key = input_key
@property
def memory_variables(self) -> List[str]:
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 将对话历史格式化为字符串
return {self.memory_key: "\n".join(self.buffer)}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
# 获取用户输入
if self.input_key is None:
user_input = inputs.get(list(inputs.keys())[0])
else:
user_input = inputs.get(self.input_key)
# 获取AI输出
ai_output = outputs.get(list(outputs.keys())[0])
# 添加到对话历史
if user_input:
self.buffer.append(f"Human: {user_input}")
if ai_output:
self.buffer.append(f"AI: {ai_output}")
def clear(self) -> None:
self.buffer = []
对于需要长期记忆和检索的场景,LangChain提供了基于向量的记忆实现。
# 向量记忆实现
class VectorStoreRetrieverMemory(BaseMemory):
"""基于向量存储的检索式记忆"""
def __init__(
self,
vectorstore: VectorStore,
memory_key: str = "context",
input_key: Optional[str] = None,
k: int = 4,
return_docs: bool = False
):
self.vectorstore = vectorstore
self.memory_key = memory_key
self.input_key = input_key
self.k = k
self.return_docs = return_docs
@property
def memory_variables(self) -> List[str]:
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 获取输入文本
input_text = inputs.get(self.input_key or list(inputs.keys())[0], "")
# 如果没有输入文本,返回空上下文
if not input_text:
return {self.memory_key: ""}
# 检索相关记忆
docs = self.vectorstore.similarity_search(input_text, k=self.k)
# 格式化检索结果
if self.return_docs:
context = docs
else:
context = "\n".join([doc.page_content for doc in docs])
return {self.memory_key: context}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
# 获取输入文本
input_text = inputs.get(self.input_key or list(inputs.keys())[0], "")
# 获取输出文本
output_text = outputs.get(list(outputs.keys())[0], "")
# 如果有输入或输出,保存到向量存储
if input_text or output_text:
document = Document(
page_content=f"Human: {input_text}\nAI: {output_text}",
metadata={"timestamp": datetime.datetime.now().isoformat()}
)
self.vectorstore.add_documents([document])
def clear(self) -> None:
# 清空向量存储
self.vectorstore.delete_documents()
将记忆集成到思维链中,可以使推理过程具有上下文感知能力。
# 集成记忆的思维链
class MemoryEnhancedChain(BaseChain):
"""集成了记忆功能的链"""
def __init__(self, base_chain: BaseChain, memory: BaseMemory):
self.base_chain = base_chain
self.memory = memory
@property
def input_keys(self) -> List[str]:
return self.base_chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.base_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 从记忆中加载上下文
memory_variables = self.memory.load_memory_variables(inputs)
# 合并输入和记忆变量
combined_inputs = {**inputs, **memory_variables}
# 运行基础链
outputs = self.base_chain.run(combined_inputs)
# 保存上下文到记忆
self.memory.save_context(inputs, outputs)
return outputs
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 从记忆中加载上下文
memory_variables = self.memory.load_memory_variables(inputs)
# 合并输入和记忆变量
combined_inputs = {**inputs, **memory_variables}
# 异步运行基础链
outputs = await self.base_chain.arun(combined_inputs)
# 保存上下文到记忆
self.memory.save_context(inputs, outputs)
return outputs
评估思维链的性能需要设计合适的指标,不仅关注最终答案的正确性,还要考虑推理过程的合理性。
# 思维链评估指标实现
class ChainEvaluator:
"""评估思维链性能的工具"""
def __init__(self, reference_answers: Dict[str, Any]):
"""
初始化评估器
参数:
reference_answers: 参考答案字典,格式为 {问题ID: 参考回答}
"""
self.reference_answers = reference_answers
def evaluate_accuracy(self, predictions: Dict[str, Any]) -> float:
"""评估最终答案的准确率"""
correct_count = 0
total_count = len(predictions)
for question_id, prediction in predictions.items():
reference = self.reference_answers.get(question_id)
if reference and self._is_correct(prediction, reference):
correct_count += 1
return correct_count / total_count if total_count > 0 else 0
def evaluate_reasoning_steps(self, predictions: Dict[str, Any]) -> Dict[str, float]:
"""评估推理步骤的质量"""
metrics = {
"step_validity": 0.0, # 步骤有效性
"step_completeness": 0.0, # 步骤完整性
"step_coherence": 0.0 # 步骤连贯性
}
total_count = len(predictions)
for question_id, prediction in predictions.items():
reference = self.reference_answers.get(question_id)
if reference:
# 计算每个推理步骤指标
step_metrics = self._evaluate_steps(prediction, reference)
# 累积指标
for key in metrics:
metrics[key] += step_metrics.get(key, 0.0)
# 计算平均值
for key in metrics:
metrics[key] /= total_count
return metrics
def _is_correct(self, prediction: Any, reference: Any) -> bool:
"""判断预测是否正确"""
# 简单实现,实际应用中可能需要更复杂的比较逻辑
return prediction == reference
def _evaluate_steps(self, prediction: Any, reference: Any) -> Dict[str, float]:
"""评估推理步骤的质量"""
# 实际实现中,这可能涉及解析推理步骤并比较其合理性
# 这里提供一个简化的示例
return {
"step_validity": 0.8, # 假设步骤有效性为80%
"step_completeness": 0.7, # 假设步骤完整性为70%
"step_coherence": 0.9 # 假设步骤连贯性为90%
}
调试思维链是开发过程中的重要环节,LangChain提供了多种调试工具和技术。
# 思维链调试器
class ChainDebugger:
"""调试思维链的工具"""
def __init__(self, chain: BaseChain):
self.chain = chain
self.debug_info = []
def run_with_debug(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""运行链并收集调试信息"""
# 重置调试信息
self.debug_info = []
# 添加输入信息
self.debug_info.append({"type": "input", "data": inputs})
try:
# 运行链
outputs = self._run_chain_with_hooks(inputs)
# 添加输出信息
self.debug_info.append({"type": "output", "data": outputs})
return outputs
except Exception as e:
# 添加错误信息
self.debug_info.append({"type": "error", "data": str(e)})
raise e
def _run_chain_with_hooks(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""运行链并添加钩子以收集中间信息"""
# 如果链是SequentialChain,我们可以访问每个子链
if isinstance(self.chain, SequentialChain):
current_inputs = inputs
intermediate_outputs = {}
for i, sub_chain in enumerate(self.chain.chains):
# 添加链执行信息
self.debug_info.append({
"type": "chain_execution",
"chain_index": i,
"chain_name": type(sub_chain).__name__,
"input": current_inputs
})
# 运行子链
try:
outputs = sub_chain.run(current_inputs)
# 添加子链输出信息
self.debug_info.append({
"type": "chain_output",
"chain_index": i,
"chain_name": type(sub_chain).__name__,
"output": outputs
})
# 更新中间输出
intermediate_outputs.update(outputs)
# 准备下一个链的输入
current_inputs = {**current_inputs, **outputs}
# 移除不需要的输入
for key in list(current_inputs.keys()):
if key not in sub_chain.output_keys and key in self.chain.input_variables:
current_inputs.pop(key)
except Exception as e:
# 添加错误信息
self.debug_info.append({
"type": "chain_error",
"chain_index": i,
"chain_name": type(sub_chain).__name__,
"error": str(e)
})
raise e
return intermediate_outputs
else:
# 对于普通链,直接运行
return self.chain.run(inputs)
def get_debug_info(self) -> List[Dict[str, Any]]:
"""获取调试信息"""
return self.debug_info
def print_debug_summary(self) -> None:
"""打印调试摘要"""
print("===== 思维链调试摘要 =====")
# 打印输入
input_info = next((info for info in self.debug_info if info["type"] == "input"), None)
if input_info:
print("输入:")
for key, value in input_info["data"].items():
print(f" {key}: {value[:50]}...") # 截断长输入
# 打印链执行信息
chain_executions = [info for info in self.debug_info if info["type"] == "chain_execution"]
for i, execution in enumerate(chain_executions):
print(f"\n链 {i}: {execution['chain_name']}")
print(" 输入:")
for key, value in execution["input"].items():
print(f" {key}: {str(value)[:50]}...")
# 查找对应的输出
output_info = next(
(info for info in self.debug_info
if info["type"] == "chain_output" and info["chain_index"] == i),
None
)
if output_info:
print(" 输出:")
for key, value in output_info["data"].items():
print(f" {key}: {str(value)[:50]}...")
# 查找对应的错误
error_info = next(
(info for info in self.debug_info
if info["type"] == "chain_error" and info["chain_index"] == i),
None
)
if error_info:
print(f" 错误: {error_info['error']}")
# 打印最终输出
output_info = next((info for info in self.debug_info if info["type"] == "output"), None)
if output_info:
print("\n最终输出:")
for key, value in output_info["data"].items():
print(f" {key}: {str(value)[:50]}...")
# 打印错误(如果有)
error_info = next((info for info in self.debug_info if info["type"] == "error"), None)
if error_info:
print(f"\n错误: {error_info['data']}")
为了更方便地调试思维链,LangChain可以集成交互式调试界面。
# 交互式调试界面
class InteractiveDebugger:
"""思维链的交互式调试界面"""
def __init__(self, chain: BaseChain, evaluator: Optional[ChainEvaluator] = None):
self.chain = chain
self.evaluator = evaluator
self.debugger = ChainDebugger(chain)
def run_interactive(self) -> None:
"""运行交互式调试会话"""
print("===== 思维链交互式调试器 =====")
print("输入问题进行调试,输入'exit'退出")
while True:
user_input = input("\n问题: ")
if user_input.lower() == "exit":
break
try:
# 运行链并收集调试信息
outputs = self.debugger.run_with_debug({"question": user_input})
# 打印结果
print("\n答案:")
for key, value in outputs.items():
print(f" {key}: {value}")
# 如果有评估器,显示评估结果
if self.evaluator:
evaluation = self.evaluator.evaluate_accuracy({user_input: outputs})
print(f"\n准确率: {evaluation:.2f}")
# 提供调试选项
self._show_debug_options()
except Exception as e:
print(f"错误: {e}")
def _show_debug_options(self) -> None:
"""显示调试选项"""
print("\n调试选项:")
print("1. 查看详细调试信息")
print("2. 查看推理步骤")
print("3. 评估推理质量")
print("4. 重新运行")
print("5. 返回")
choice = input("选择: ")
if choice == "1":
self._show_detailed_debug_info()
elif choice == "2":
self._show_reasoning_steps()
elif choice == "3":
self._evaluate_reasoning()
elif choice == "4":
self._rerun_with_modifications()
elif choice == "5":
return
else:
print("无效选择")
def _show_detailed_debug_info(self) -> None:
"""显示详细调试信息"""
self.debugger.print_debug_summary()
self._show_debug_options()
def _show_reasoning_steps(self) -> None:
"""显示推理步骤"""
debug_info = self.debugger.get_debug_info()
# 查找推理步骤
reasoning_steps = []
for info in debug_info:
if info["type"] == "chain_output":
for key, value in info["data"].items():
if "reasoning" in key.lower() or "steps" in key.lower():
reasoning_steps.append(value)
if not reasoning_steps:
print("未找到推理步骤")
return
print("\n推理步骤:")
for i, step in enumerate(reasoning_steps):
print(f"步骤 {i+1}:")
print(step)
print("-" * 50)
self._show_debug_options()
def _evaluate_reasoning(self) -> None:
"""评估推理质量"""
if not self.evaluator:
print("未设置评估器")
return
debug_info = self.debugger.get_debug_info()
# 提取预测
output_info = next((info for info in debug_info if info["type"] == "output"), None)
if not output_info:
print("未找到输出")
return
# 评估推理
predictions = {
"question": output_info["data"].get("answer", "")
}
accuracy = self.evaluator.evaluate_accuracy(predictions)
print(f"准确率: {accuracy:.2f}")
if hasattr(self.evaluator, "evaluate_reasoning_steps"):
steps_metrics = self.evaluator.evaluate_reasoning_steps(predictions)
print("\n推理步骤质量:")
for metric, value in steps_metrics.items():
print(f" {metric}: {value:.2f}")
self._show_debug_options()
def _rerun_with_modifications(self) -> None:
"""使用修改后的参数重新运行"""
debug_info = self.debugger.get_debug_info()
# 提取原始输入
input_info = next((info for info in debug_info if info["type"] == "input"), None)
if not input_info:
print("未找到输入")
return
print("\n当前输入:")
for key, value in input_info["data"].items():
print(f" {key}: {value}")
# 允许用户修改输入
new_inputs = input_info["data"].copy()
for key in new_inputs:
new_value = input(f"修改 {key} (按Enter保持原值): ")
if new_value:
new_inputs[key] = new_value
# 重新运行链
try:
outputs = self.debugger.run_with_debug(new_inputs)
print("\n新答案:")
for key, value in outputs.items():
print(f" {key}: {value}")
self._show_debug_options()
except Exception as e:
print(f"错误: {e}")
在需要外部知识支持的任务中,思维链可以与知识检索系统集成,实现知识密集型推理。
# 知识密集型推理链
class KnowledgeIntensiveChain(BaseChain):
"""集成知识检索的思维链"""
def __init__(
self,
retriever: BaseRetriever,
llm_chain: LLMChain,
max_knowledge_length: int = 2000,
knowledge_key: str = "knowledge"
):
self.retriever = retriever
self.llm_chain = llm_chain
self.max_knowledge_length = max_knowledge_length
self.knowledge_key = knowledge_key
@property
def input_keys(self) -> List[str]:
return self.llm_chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.llm_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 提取问题
question = inputs.get("question", "")
# 检索相关知识
docs = self.retriever.get_relevant_documents(question)
# 合并知识文档
knowledge = "\n\n".join([doc.page_content for doc in docs])
# 截断知识以避免过长
if len(knowledge) > self.max_knowledge_length:
knowledge = knowledge[:self.max_knowledge_length] + "..."
# 将知识添加到输入中
new_inputs = {**inputs, self.knowledge_key: knowledge}
# 运行LLM链
return self.llm_chain.run(new_inputs)
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 提取问题
question = inputs.get("question", "")
# 异步检索相关知识
docs = await self.retriever.aget_relevant_documents(question)
# 合并知识文档
knowledge = "\n\n".join([doc.page_content for doc in docs])
# 截断知识以避免过长
if len(knowledge) > self.max_knowledge_length:
knowledge = knowledge[:self.max_knowledge_length] + "..."
# 将知识添加到输入中
new_inputs = {**inputs, self.knowledge_key: knowledge}
# 异步运行LLM链
return await self.llm_chain.arun(new_inputs)
思维链可以扩展到多模态场景,处理文本、图像、音频等多种类型的输入和输出。
# 多模态思维链
class MultiModalChain(BaseChain):
"""处理多模态输入的思维链"""
def __init__(
self,
text_chain: BaseChain,
image_processor: Optional[Callable] = None,
audio_processor: Optional[Callable] = None,
output_formatter: Optional[Callable] = None
):
self.text_chain = text_chain
self.image_processor = image_processor
self.audio_processor = audio_processor
self.output_formatter = output_formatter
@property
def input_keys(self) -> List[str]:
return ["text", "images", "audio"]
@property
def output_keys(self) -> List[str]:
return self.text_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 处理文本输入
text_input = inputs.get("text", "")
# 处理图像输入
image_inputs = inputs.get("images", [])
image_descriptions = []
if self.image_processor and image_inputs:
for image in image_inputs:
description = self.image_processor(image)
image_descriptions.append(description)
# 处理音频输入
audio_inputs = inputs.get("audio", [])
audio_transcriptions = []
if self.audio_processor and audio_inputs:
for audio in audio_inputs:
transcription = self.audio_processor(audio)
audio_transcriptions.append(transcription)
# 构建多模态输入
multimodal_input = {
"text": text_input,
"image_descriptions": image_descriptions,
"audio_transcriptions": audio_transcriptions
}
# 运行文本链
outputs = self.text_chain.run(multimodal_input)
# 格式化输出
if self.output_formatter:
outputs = self.output_formatter(outputs)
return outputs
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 处理文本输入
text_input = inputs.get("text", "")
# 异步处理图像输入
image_inputs = inputs.get("images", [])
image_descriptions = []
if self.image_processor and image_inputs:
image_tasks = [self.image_processor(image) for image in image_inputs]
image_descriptions = await asyncio.gather(*image_tasks)
# 异步处理音频输入
audio_inputs = inputs.get("audio", [])
audio_transcriptions = []
if self.audio_processor and audio_inputs:
audio_tasks = [self.audio_processor(audio) for audio in audio_inputs]
audio_transcriptions = await asyncio.gather(*audio_tasks)
# 构建多模态输入
multimodal_input = {
"text": text_input,
"image_descriptions": image_descriptions,
"audio_transcriptions": audio_transcriptions
}
# 异步运行文本链
outputs = await self.text_chain.arun(multimodal_input)
# 格式化输出
if self.output_formatter:
outputs = self.output_formatter(outputs)
return outputs
自我修正思维链能够检测自身推理中的错误并进行修正,提高推理的准确性。
# 自我修正思维链
class SelfCorrectingChain(BaseChain):
"""能够自我修正推理错误的思维链"""
def __init__(
self,
base_chain: BaseChain,
error_detector: Callable[[Dict[str, Any]], bool],
correction_prompt: PromptTemplate,
max_attempts: int = 3
):
self.base_chain = base_chain
self.error_detector = error_detector
self.correction_prompt = correction_prompt
self.max_attempts = max_attempts
@property
def input_keys(self) -> List[str]:
return self.base_chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.base_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
current_inputs = inputs.copy()
attempt = 0
while attempt < self.max_attempts:
# 运行基础链
outputs = self.base_chain.run(current_inputs)
# 检查是否存在错误
if not self.error_detector(outputs):
return outputs
# 增加尝试次数
attempt += 1
# 如果达到最大尝试次数,返回当前输出
if attempt >= self.max_attempts:
return outputs
# 准备修正输入
correction_inputs = {
"original_input": inputs,
"previous_output": outputs,
"error_description": "检测到推理错误,请修正"
}
# 生成修正提示
correction_prompt = self.correction_prompt.format(**correction_inputs)
# 更新输入,添加修正提示
current_inputs = {**inputs, "correction_prompt": correction_prompt}
# 记录修正尝试
print(f"尝试修正 {attempt}/{self.max_attempts}")
return outputs
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
current_inputs = inputs.copy()
attempt = 0
while attempt < self.max_attempts:
# 异步运行基础链
outputs = await self.base_chain.arun(current_inputs)
# 检查是否存在错误
if not self.error_detector(outputs):
return outputs
# 增加尝试次数
attempt += 1
# 如果达到最大尝试次数,返回当前输出
if attempt >= self.max_attempts:
return outputs
# 准备修正输入
correction_inputs = {
"original_input": inputs,
"previous_output": outputs,
"error_description": "检测到推理错误,请修正"
}
# 生成修正提示
correction_prompt = self.correction_prompt.format(**correction_inputs)
# 更新输入,添加修正提示
current_inputs = {**inputs, "correction_prompt": correction_prompt}
# 记录修正尝试
print(f"尝试修正 {attempt}/{self.max_attempts}")
return outputs
协作式思维链允许多个模型或代理协作解决复杂问题。
# 协作式思维链
class CollaborativeChain(BaseChain):
"""多个链协作解决问题的思维链"""
def __init__(
self,
chains: List[BaseChain],
communication_protocol: Callable,
final_combiner: Callable
):
self.chains = chains
self.communication_protocol = communication_protocol
self.final_combiner = final_combiner
@property
def input_keys(self) -> List[str]:
return self.chains[0].input_keys
@property
def output_keys(self) -> List[str]:
return ["collaborative_output"]
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 初始化每个链的输入
chain_inputs = [inputs.copy() for _ in self.chains]
# 每个链的输出
chain_outputs = [None] * len(self.chains)
# 协作轮数
max_rounds = 3
for round in range(max_rounds):
# 每个链依次运行
for i, chain in enumerate(self.chains):
if chain_outputs[i] is None:
# 第一轮运行
chain_outputs[i] = chain.run(chain_inputs[i])
else:
# 后续轮次,根据其他链的输出更新输入
updated_inputs = self.communication_protocol(
chain_index=i,
all_outputs=chain_outputs,
original_input=inputs
)
chain_inputs[i] = {**chain_inputs[i], **updated_inputs}
chain_outputs[i] = chain.run(chain_inputs[i])
# 检查是否可以提前结束协作
if self._should_stop_collaboration(chain_outputs):
break
# 合并所有链的输出
final_output = self.final_combiner(chain_outputs)
return {"collaborative_output": final_output}
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 初始化每个链的输入
chain_inputs = [inputs.copy() for _ in self.chains]
# 每个链的输出
chain_outputs = [None] * len(self.chains)
# 协作轮数
max_rounds = 3
for round in range(max_rounds):
# 创建异步任务
tasks = []
for i, chain in enumerate(self.chains):
if chain_outputs[i] is None:
# 第一轮运行
tasks.append(asyncio.create_task(chain.arun(chain_inputs[i])))
else:
# 后续轮次,根据其他链的输出更新输入
updated_inputs = self.communication_protocol(
chain_index=i,
all_outputs=chain_outputs,
original_input=inputs
)
chain_inputs[i] = {**chain_inputs[i], **updated_inputs}
tasks.append(asyncio.create_task(chain.arun(chain_inputs[i])))
# 等待所有任务完成
new_outputs = await asyncio.gather(*tasks)
# 更新输出
for i in range(len(self.chains)):
chain_outputs[i] = new_outputs[i]
# 检查是否可以提前结束协作
if self._should_stop_collaboration(chain_outputs):
break
# 合并所有链的输出
final_output = self.final_combiner(chain_outputs)
return {"collaborative_output": final_output}
def _should_stop_collaboration(self, outputs: List[Dict[str, Any]]) -> bool:
"""判断是否应该停止协作"""
# 简单实现,实际应用中可能需要更复杂的判断逻辑
# 例如,检查输出是否收敛或达到共识
return False
在生产环境中部署思维链应用需要考虑可扩展性、可靠性和性能等因素。
# 思维链服务部署架构
class ChainService:
"""思维链服务部署架构"""
def __init__(
self,
chain: BaseChain,
cache: Optional[BaseCache] = None,
rate_limiter: Optional[BaseRateLimiter] = None,
metrics: Optional[BaseMetrics] = None
):
self.chain = chain
self.cache = cache
self.rate_limiter = rate_limiter
self.metrics = metrics
async def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
"""处理用户请求"""
# 记录请求指标
if self.metrics:
self.metrics.record_request(request)
# 检查缓存
cache_key = self._generate_cache_key(request)
cached_response = await self._get_cached_response(cache_key)
if cached_response is not None:
if self.metrics:
self.metrics.record_cache_hit(cache_key)
return cached_response
# 应用速率限制
if self.rate_limiter:
await self.rate_limiter.check_limit(request)
try:
# 处理请求
response = await self.chain.arun(request)
# 缓存响应
if self.cache:
await self.cache.set(cache_key, response)
# 记录成功指标
if self.metrics:
self.metrics.record_success(request, response)
return response
except Exception as e:
# 记录错误指标
if self.metrics:
self.metrics.record_error(request, e)
# 处理异常
error_response = {
"error": str(e),
"status": "failed"
}
return error_response
def _generate_cache_key(self, request: Dict[str, Any]) -> str:
"""生成缓存键"""
# 简单实现,实际应用中可能需要更复杂的哈希方法
return str(hash(frozenset(request.items())))
async def _get_cached_response(self, cache_key: str) -> Optional[Dict[str, Any]]:
"""获取缓存的响应"""
if self.cache:
return await self.cache.get(cache_key)
return None
为了提高思维链应用的性能,需要实现有效的缓存策略。
# 思维链缓存实现
class ChainCache:
"""思维链的缓存实现"""
def __init__(self, cache_backend: BaseCacheBackend, ttl: int = 3600):
self.cache_backend = cache_backend
self.ttl = ttl
async def get(self, key: str) -> Optional[Dict[str, Any]]:
"""从缓存获取数据"""
return await self.cache_backend.get(key)
async def set(self, key: str, value: Dict[str, Any]) -> None:
"""设置缓存数据"""
await self.cache_backend.set(key, value, ttl=self.ttl)
async def delete(self, key: str) -> None:
"""删除缓存数据"""
await self.cache_backend.delete(key)
async def clear(self) -> None:
"""清空缓存"""
await self.cache_backend.clear()
# 多级缓存实现
class MultiLevelCache:
"""多级缓存实现,结合内存缓存和持久化缓存"""
def __init__(
self,
memory_cache: BaseCacheBackend,
persistent_cache: BaseCacheBackend,
ttl: int = 3600
):
self.memory_cache = memory_cache
self.persistent_cache = persistent_cache
self.ttl = ttl
async def get(self, key: str) -> Optional[Dict[str, Any]]:
"""从多级缓存获取数据"""
# 首先检查内存缓存
value = await self.memory_cache.get(key)
if value is not None:
return value
# 然后检查持久化缓存
value = await self.persistent_cache.get(key)
if value is not None:
# 将值存入内存缓存以便下次快速访问
await self.memory_cache.set(key, value, ttl=self.ttl)
return value
return None
async def set(self, key: str, value: Dict[str, Any]) -> None:
"""设置多级缓存数据"""
# 同时存入内存缓存和持久化缓存
await asyncio.gather(
self.memory_cache.set(key, value, ttl=self.ttl),
self.persistent_cache.set(key, value, ttl=self.ttl)
)
async def delete(self, key: str) -> None:
"""删除多级缓存数据"""
# 同时从内存缓存和持久化缓存删除
await asyncio.gather(
self.memory_cache.delete(key),
self.persistent_cache.delete(key)
)
async def clear(self) -> None:
"""清空多级缓存"""
await asyncio.gather(
self.memory_cache.clear(),
self.persistent_cache.clear()
)
在生产环境中,监控和告警是确保思维链应用稳定运行的关键。
# 思维链监控系统
class ChainMonitor:
"""思维链监控系统"""
def __init__(
self,
metrics_provider: BaseMetricsProvider,
alerting_provider: BaseAlertingProvider,
thresholds: Dict[str, float] = {}
):
self.metrics_provider = metrics_provider
self.alerting_provider = alerting_provider
self.thresholds = {
"request_time_avg": 5.0, # 平均请求时间阈值(秒)
"error_rate": 0.1, # 错误率阈值
"cache_hit_rate": 0.3, # 缓存命中率阈值
**thresholds
}
async def monitor(self) -> None:
"""运行监控检查"""
# 收集指标
metrics = await self.collect_metrics()
# 检查告警条件
alerts = self.check_alerts(metrics)
# 发送告警
for alert in alerts:
await self.alerting_provider.send_alert(alert)
async def collect_metrics(self) -> Dict[str, Any]:
"""收集监控指标"""
metrics = {}
# 收集请求指标
request_metrics = await self.metrics_provider.get_request_metrics()
metrics.update(request_metrics)
# 收集缓存指标
cache_metrics = await self.metrics_provider.get_cache_metrics()
metrics.update({f"cache_{k}": v for k, v in cache_metrics.items()})
# 收集模型指标
model_metrics = await self.metrics_provider.get_model_metrics()
metrics.update({f"model_{k}": v for k, v in model_metrics.items()})
return metrics
def check_alerts(self, metrics: Dict[str, Any]) -> List[Dict[str, Any]]:
"""检查告警条件"""
alerts = []
# 检查平均请求时间
if "request_time_avg" in metrics and metrics["request_time_avg"] > self.thresholds["request_time_avg"]:
alerts.append({
"severity": "warning",
"message": f"平均请求时间过高: {metrics['request_time_avg']:.2f}s",
"metric": "request_time_avg",
"value": metrics["request_time_avg"],
"threshold": self.thresholds["request
"threshold": self.thresholds["request_time_avg"]
})
# 检查错误率
if "error_rate" in metrics and metrics["error_rate"] > self.thresholds["error_rate"]:
alerts.append({
"severity": "critical",
"message": f"错误率过高: {metrics['error_rate']:.2%}",
"metric": "error_rate",
"value": metrics["error_rate"],
"threshold": self.thresholds["error_rate"]
})
# 检查缓存命中率
if "cache_hit_rate" in metrics and metrics["cache_hit_rate"] < self.thresholds["cache_hit_rate"]:
alerts.append({
"severity": "warning",
"message": f"缓存命中率过低: {metrics['cache_hit_rate']:.2%}",
"metric": "cache_hit_rate",
"value": metrics["cache_hit_rate"],
"threshold": self.thresholds["cache_hit_rate"]
})
# 添加更多监控检查...
return alerts
async def log_metrics(self, metrics: Dict[str, Any]) -> None:
"""记录监控指标"""
await self.metrics_provider.log_metrics(metrics)
为了评估不同思维链配置的性能,生产环境中通常需要实现A/B测试框架。
# 思维链A/B测试框架
class ChainABTest:
"""思维链A/B测试框架"""
def __init__(
self,
chains: Dict[str, BaseChain],
traffic_allocation: Dict[str, float],
evaluator: ChainEvaluator,
metrics_provider: BaseMetricsProvider,
test_duration: int = 86400 # 默认测试持续时间(秒)
):
"""
初始化A/B测试框架
参数:
chains: 不同版本的思维链,格式为 {版本名称: 链实例}
traffic_allocation: 流量分配比例,格式为 {版本名称: 比例}
evaluator: 评估器,用于评估不同版本的性能
metrics_provider: 指标提供器,用于记录测试指标
test_duration: 测试持续时间(秒)
"""
self.chains = chains
self.traffic_allocation = traffic_allocation
self.evaluator = evaluator
self.metrics_provider = metrics_provider
self.test_duration = test_duration
self.start_time = datetime.datetime.now()
# 验证流量分配
total_allocation = sum(traffic_allocation.values())
if abs(total_allocation - 1.0) > 0.001:
raise ValueError(f"流量分配总和必须为1.0,当前为{total_allocation}")
# 初始化测试结果
self.results = {
version: {"requests": 0, "correct": 0, "latency": []}
for version in chains.keys()
}
def select_version(self, user_id: str) -> str:
"""根据用户ID选择链版本"""
# 使用确定性哈希确保同一用户始终获得相同的版本
hash_value = hash(user_id) % 100
cumulative_allocation = 0
for version, allocation in self.traffic_allocation.items():
cumulative_allocation += allocation * 100
if hash_value < cumulative_allocation:
return version
# 默认返回第一个版本
return next(iter(self.traffic_allocation.keys()))
async def run_test(self, user_id: str, input: Dict[str, Any]) -> Dict[str, Any]:
"""运行A/B测试,处理用户请求"""
# 检查测试是否已结束
if (datetime.datetime.now() - self.start_time).total_seconds() > self.test_duration:
return {"error": "A/B测试已结束"}
# 选择链版本
version = self.select_version(user_id)
chain = self.chains[version]
# 记录开始时间
start_time = time.time()
# 运行链
try:
output = await chain.arun(input)
# 记录响应时间
latency = time.time() - start_time
self.results[version]["latency"].append(latency)
# 记录请求数
self.results[version]["requests"] += 1
# 评估结果(如果有参考答案)
if "reference_answer" in input:
is_correct = self.evaluator._is_correct(output, input["reference_answer"])
if is_correct:
self.results[version]["correct"] += 1
# 记录指标
await self.metrics_provider.log_metric(
f"ab_test.{version}.latency", latency
)
await self.metrics_provider.log_metric(
f"ab_test.{version}.requests", 1
)
return output
except Exception as e:
# 记录错误
self.results[version]["requests"] += 1
await self.metrics_provider.log_metric(
f"ab_test.{version}.errors", 1
)
return {"error": str(e)}
def get_test_results(self) -> Dict[str, Any]:
"""获取测试结果"""
results = {}
for version, data in self.results.items():
requests = data["requests"]
correct = data["correct"]
latency = data["latency"]
accuracy = correct / requests if requests > 0 else 0
avg_latency = sum(latency) / len(latency) if latency else 0
results[version] = {
"requests": requests,
"accuracy": accuracy,
"avg_latency": avg_latency,
"error_rate": (requests - correct) / requests if requests > 0 else 0
}
# 确定最佳版本
best_version = max(
results.keys(),
key=lambda v: results[v]["accuracy"] - 0.1 * results[v]["avg_latency"]
)
return {
"results": results,
"best_version": best_version,
"start_time": self.start_time.isoformat(),
"duration": (datetime.datetime.now() - self.start_time).total_seconds()
}
在实际应用中,思维链系统需要多种安全防护机制来防止恶意利用。
# 思维链安全防护系统
class ChainSecurity:
"""思维链安全防护系统"""
def __init__(
self,
prompt_filter: Optional[BasePromptFilter] = None,
output_filter: Optional[BaseOutputFilter] = None,
access_control: Optional[BaseAccessControl] = None,
logging: Optional[BaseLogging] = None
):
self.prompt_filter = prompt_filter
self.output_filter = output_filter
self.access_control = access_control
self.logging = logging
async def validate_input(self, user_id: str, input: Dict[str, Any]) -> bool:
"""验证输入安全性"""
# 检查访问权限
if self.access_control and not await self.access_control.check_access(user_id, input):
if self.logging:
await self.logging.log_security_event(
user_id, "access_denied", input
)
return False
# 过滤恶意提示
if self.prompt_filter:
is_safe, reason = await self.prompt_filter.validate_prompt(input)
if not is_safe:
if self.logging:
await self.logging.log_security_event(
user_id, "malicious_prompt", input, reason
)
return False
return True
async def filter_output(self, user_id: str, output: Dict[str, Any]) -> Dict[str, Any]:
"""过滤输出内容"""
if self.output_filter:
filtered_output, is_safe, reason = await self.output_filter.filter_output(output)
if not is_safe and self.logging:
await self.logging.log_security_event(
user_id, "unsafe_output", output, reason
)
return filtered_output
return output
async def log_interaction(self, user_id: str, input: Dict[str, Any], output: Dict[str, Any]) -> None:
"""记录交互日志"""
if self.logging:
await self.logging.log_interaction(user_id, input, output)
思维链系统需要考虑模型可能产生的偏见问题。
# 偏见检测与缓解系统
class BiasDetectionMitigation:
"""思维链中的偏见检测与缓解系统"""
def __init__(
self,
bias_detectors: List[BaseBiasDetector],
mitigation_strategies: Dict[str, Callable] = {}
):
self.bias_detectors = bias_detectors
self.mitigation_strategies = {
"rejection": self._reject_biased_output,
"rewrite": self._rewrite_biased_output,
**mitigation_strategies
}
async def detect_bias(self, text: str) -> Dict[str, Any]:
"""检测文本中的偏见"""
bias_results = {}
for detector in self.bias_detectors:
bias_type = detector.get_bias_type()
is_biased, score, details = await detector.detect_bias(text)
bias_results[bias_type] = {
"is_biased": is_biased,
"score": score,
"details": details
}
return bias_results
async def mitigate_bias(self, text: str, bias_results: Dict[str, Any], strategy: str = "rewrite") -> str:
"""缓解文本中的偏见"""
if not any(result["is_biased"] for result in bias_results.values()):
return text
mitigation_fn = self.mitigation_strategies.get(strategy)
if not mitigation_fn:
raise ValueError(f"未知的缓解策略: {strategy}")
return await mitigation_fn(text, bias_results)
async def _reject_biased_output(self, text: str, bias_results: Dict[str, Any]) -> str:
"""拒绝有偏见的输出"""
return "抱歉,生成的内容可能包含偏见,已被过滤。"
async def _rewrite_biased_output(self, text: str, bias_results: Dict[str, Any]) -> str:
"""重写有偏见的输出"""
# 这里可以实现更复杂的重写逻辑
# 简化示例,实际应用中可能需要使用专门的模型或规则
return text.replace("男性应该", "人们应该").replace("女性应该", "人们应该")
在处理用户数据时,思维链系统需要考虑隐私保护问题。
# 隐私保护系统
class PrivacyProtection:
"""思维链中的隐私保护系统"""
def __init__(
self,
anonymization_strategy: BaseAnonymizationStrategy,
data_retention_policy: BaseDataRetentionPolicy,
encryption_provider: Optional[BaseEncryptionProvider] = None
):
self.anonymization_strategy = anonymization_strategy
self.data_retention_policy = data_retention_policy
self.encryption_provider = encryption_provider
async def anonymize_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""匿名化用户数据"""
return await self.anonymization_strategy.anonymize(data)
async def encrypt_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""加密敏感数据"""
if not self.encryption_provider:
return data
encrypted_data = {}
for key, value in data.items():
if self.encryption_provider.is_sensitive(key):
encrypted_data[key] = await self.encryption_provider.encrypt(value)
else:
encrypted_data[key] = value
return encrypted_data
async def decrypt_data(self, encrypted_data: Dict[str, Any]) -> Dict[str, Any]:
"""解密敏感数据"""
if not self.encryption_provider:
return encrypted_data
decrypted_data = {}
for key, value in encrypted_data.items():
if self.encryption_provider.is_sensitive(key):
decrypted_data[key] = await self.encryption_provider.decrypt(value)
else:
decrypted_data[key] = value
return decrypted_data
async def enforce_data_retention(self, data_id: str, creation_time: datetime.datetime) -> None:
"""执行数据保留策略"""
if await self.data_retention_policy.should_delete(data_id, creation_time):
await self.data_retention_policy.delete_data(data_id)
未来,思维链技术可能会与自主代理进一步融合,形成更强大的系统。
# 自主思维代理
class AutonomousThoughtAgent:
"""结合思维链的自主代理"""
def __init__(
self,
planner: BasePlanner,
executor: BaseExecutor,
memory: BaseMemory,
evaluator: BaseEvaluator,
goal_formulator: BaseGoalFormulator
):
self.planner = planner
self.executor = executor
self.memory = memory
self.evaluator = evaluator
self.goal_formulator = goal_formulator
self.running = False
async def initialize(self, initial_goal: str) -> None:
"""初始化代理"""
self.current_goal = await self.goal_formulator.formulate_goal(initial_goal)
self.running = True
async def run_cycle(self) -> Dict[str, Any]:
"""运行一个思考周期"""
if not self.running:
return {"status": "not_running"}
# 从记忆中加载上下文
context = await self.memory.load_memory_variables({})
# 制定计划
plan = await self.planner.create_plan(self.current_goal, context)
# 执行计划
results = await self.executor.execute_plan(plan, context)
# 评估结果
evaluation = await self.evaluator.evaluate_results(self.current_goal, results)
# 更新记忆
await self.memory.save_context(
{"goal": self.current_goal, "plan": plan},
{"results": results, "evaluation": evaluation}
)
# 确定下一步目标
if evaluation["success"]:
self.current_goal = await self.goal_formulator.get_next_goal(
self.current_goal, results
)
if not self.current_goal:
self.running = False
return {"status": "completed", "final_results": results}
else:
# 如果失败,尝试修改目标或计划
self.current_goal = await self.goal_formulator.revise_goal(
self.current_goal, results, evaluation
)
return {
"status": "running",
"current_goal": self.current_goal,
"plan": plan,
"results": results,
"evaluation": evaluation
}
async def run_continuously(self, max_cycles: int = 100) -> Dict[str, Any]:
"""连续运行多个思考周期"""
cycle = 0
final_results = None
while self.running and cycle < max_cycles:
results = await self.run_cycle()
final_results = results
cycle += 1
return final_results or {"status": "not_running"}
未来,思维链可能会与外部知识系统进行更深度的整合,形成知识增强的推理能力。
# 知识增强型思维链
class KnowledgeEnhancedChain(BaseChain):
"""深度整合外部知识系统的思维链"""
def __init__(
self,
knowledge_retriever: BaseKnowledgeRetriever,
reasoning_chain: BaseChain,
knowledge_optimizer: BaseKnowledgeOptimizer,
feedback_learner: Optional[BaseFeedbackLearner] = None
):
self.knowledge_retriever = knowledge_retriever
self.reasoning_chain = reasoning_chain
self.knowledge_optimizer = knowledge_optimizer
self.feedback_learner = feedback_learner
@property
def input_keys(self) -> List[str]:
return self.reasoning_chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.reasoning_chain.output_keys
async def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 提取问题
question = inputs.get("question", "")
# 检索相关知识
knowledge_items = await self.knowledge_retriever.retrieve(question)
# 优化知识表示
optimized_knowledge = await self.knowledge_optimizer.optimize(
question, knowledge_items
)
# 将知识添加到输入中
enhanced_inputs = {**inputs, "knowledge": optimized_knowledge}
# 运行推理链
outputs = await self.reasoning_chain.arun(enhanced_inputs)
# 如果有反馈学习器,记录这次交互
if self.feedback_learner:
await self.feedback_learner.record_interaction(
question, knowledge_items, outputs
)
return outputs
async def receive_feedback(self, question: str, correct_answer: str) -> None:
"""接收用户反馈并改进"""
if self.feedback_learner:
await self.feedback_learner.learn_from_feedback(question, correct_answer)
# 更新知识优化器
updated_optimizer = await self.feedback_learner.update_knowledge_optimizer()
if updated_optimizer:
self.knowledge_optimizer = updated_optimizer
未来,思维链可能会扩展到更多模态,实现更全面的感知和推理能力。
# 多模态思维链系统
class MultiModalThoughtChain:
"""处理多种模态信息的思维链系统"""
def __init__(
self,
text_processor: BaseTextProcessor,
image_processor: BaseImageProcessor,
audio_processor: BaseAudioProcessor,
cross_modal_chain: BaseChain,
output_generator: BaseOutputGenerator
):
self.text_processor = text_processor
self.image_processor = image_processor
self.audio_processor = audio_processor
self.cross_modal_chain = cross_modal_chain
self.output_generator = output_generator
async def process_input(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""处理多模态输入"""
# 并行处理不同模态的输入
tasks = []
if "text" in inputs:
text_task = asyncio.create_task(
self.text_processor.process(inputs["text"])
)
tasks.append(("text", text_task))
if "images" in inputs:
image_tasks = [
asyncio.create_task(self.image_processor.process(img))
for img in inputs["images"]
]
tasks.append(("images", asyncio.gather(*image_tasks)))
if "audio" in inputs:
audio_tasks = [
asyncio.create_task(self.audio_processor.process(audio))
for audio in inputs["audio"]
]
tasks.append(("audio", asyncio.gather(*audio_tasks)))
# 等待所有处理完成
processed_inputs = {}
for modality, task in tasks:
processed_inputs[modality] = await task
# 运行跨模态链
cross_modal_outputs = await self.cross_modal_chain.arun(processed_inputs)
# 生成最终输出
final_output = await self.output_generator.generate(cross_modal_outputs)
return final_output
未来,思维链技术可能会更加注重可解释性和透明度,使模型的决策过程更加易于理解。
# 可解释思维链
class ExplainableThoughtChain(BaseChain):
"""提供详细解释的思维链"""
def __init__(
self,
base_chain: BaseChain,
explanation_generator: BaseExplanationGenerator,
trace_recorder: BaseTraceRecorder
):
self.base_chain = base_chain
self.explanation_generator = explanation_generator
self.trace_recorder = trace_recorder
@property
def input_keys(self) -> List[str]:
return self.base_chain.input_keys
@property
def output_keys(self) -> List[str]:
return self.base_chain.output_keys + ["explanation", "trace"]
async def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
# 记录输入
self.trace_recorder.record_input(inputs)
# 运行基础链
outputs = await self.base_chain.arun(inputs)
# 记录输出
self.trace_recorder.record_output(outputs)
# 生成解释
explanation = await self.explanation_generator.generate_explanation(
inputs, outputs, self.trace_recorder.get_trace()
)
# 获取执行轨迹
trace = self.trace_recorder.get_trace()
# 返回带有解释和轨迹的结果
return {**outputs, "explanation": explanation, "trace": trace}
思维链技术可以应用于医疗领域,辅助医生进行诊断。
# 医疗诊断辅助系统
class MedicalDiagnosisAssistant:
"""基于思维链的医疗诊断辅助系统"""
def __init__(
self,
medical_knowledge_base: MedicalKnowledgeBase,
symptom_analyzer: SymptomAnalyzer,
diagnostic_chain: BaseChain,
evidence_evaluator: EvidenceEvaluator
):
self.medical_knowledge_base = medical_knowledge_base
self.symptom_analyzer = symptom_analyzer
self.diagnostic_chain = diagnostic_chain
self.evidence_evaluator = evidence_evaluator
async def diagnose(self, patient_info: Dict[str, Any]) -> Dict[str, Any]:
"""诊断患者病情"""
# 分析症状
analyzed_symptoms = await self.symptom_analyzer.analyze(patient_info)
# 检索相关医学知识
relevant_knowledge = await self.medical_knowledge_base.retrieve(
analyzed_symptoms, patient_info.get("patient_history", {})
)
# 准备诊断输入
diagnostic_input = {
"symptoms": analyzed_symptoms,
"patient_history": patient_info.get("patient_history", {}),
"medical_knowledge": relevant_knowledge
}
# 运行诊断链
diagnostic_output = await self.diagnostic_chain.arun(diagnostic_input)
# 评估诊断证据
confidence = await self.evidence_evaluator.evaluate(
diagnostic_input, diagnostic_output
)
# 构建诊断结果
result = {
"diagnosis": diagnostic_output["diagnosis"],
"explanation": diagnostic_output["explanation"],
"confidence": confidence,
"suggested_tests": diagnostic_output.get("suggested_tests", []),
"treatment_options": diagnostic_output.get("treatment_options", [])
}
return result
在金融领域,思维链可以用于构建复杂的风险评估系统。
# 金融风险评估系统
class FinancialRiskAssessmentSystem:
"""基于思维链的金融风险评估系统"""
def __init__(
self,
data_ingestor: FinancialDataIngestor,
risk_analysis_chain: BaseChain,
scenario_generator: ScenarioGenerator,
compliance_checker: ComplianceChecker
):
self.data_ingestor = data_ingestor
self.risk_analysis_chain = risk_analysis_chain
self.scenario_generator = scenario_generator
self.compliance_checker = compliance_checker
async def assess_risk(self, financial_entity: str, scenario: Optional[str] = None) -> Dict[str, Any]:
"""评估金融实体的风险"""
# 获取金融数据
financial_data = await self.data_ingestor.get_data(financial_entity)
# 如果没有指定场景,生成标准场景
if not scenario:
scenario = await self.scenario_generator.generate_standard_scenario()
# 准备风险分析输入
analysis_input = {
"financial_entity": financial_entity,
"financial_data": financial_data,
"scenario": scenario
}
# 运行风险分析链
risk_analysis = await self.risk_analysis_chain.arun(analysis_input)
# 检查合规性
compliance_status = await self.compliance_checker.check(
financial_entity, risk_analysis
)
# 构建最终风险评估
risk_assessment = {
"financial_entity": financial_entity,
"risk_metrics": risk_analysis["risk_metrics"],
"risk_level": risk_analysis["risk_level"],
"risk_factors": risk_analysis["risk_factors"],
"mitigation_strategies": risk_analysis["mitigation_strategies"],
"compliance_status": compliance_status
}
return risk_assessment
在工业领域,思维链可以用于预测和诊断设备故障。
# 工业故障预测与诊断系统
class IndustrialFaultPredictionSystem:
"""基于思维链的工业故障预测与诊断系统"""
def __init__(
self,
sensor_data_processor: SensorDataProcessor,
anomaly_detector: AnomalyDetector,
fault_diagnosis_chain: BaseChain,
maintenance_planner: MaintenancePlanner
):
self.sensor_data_processor = sensor_data_processor
self.anomaly_detector = anomaly_detector
self.fault_diagnosis_chain = fault_diagnosis_chain
self.maintenance_planner = maintenance_planner
async def monitor(self, equipment_id: str) -> Dict[str, Any]:
"""监控设备状态"""
# 获取传感器数据
sensor_data = await self.sensor_data_processor.get_latest_data(equipment_id)
# 检测异常
anomaly = await self.anomaly_detector.detect(sensor_data)
if not anomaly["is_anomalous"]:
return {
"equipment_id": equipment_id,
"status": "normal",
"metrics": sensor_data,
"anomaly": anomaly
}
# 如果检测到异常,进行故障诊断
diagnosis_input = {
"equipment_id": equipment_id,
"sensor_data": sensor_data,
"anomaly": anomaly
}
diagnosis = await self.fault_diagnosis_chain.arun(diagnosis_input)
# 生成维护计划
maintenance_plan = await self.maintenance_planner.generate_plan(
equipment_id, diagnosis
)
return {
"equipment_id": equipment_id,
"status": "fault",
"metrics": sensor_data,
"anomaly": anomaly,
"diagnosis": diagnosis,
"maintenance_plan": maintenance_plan
}
在教育领域,思维链可以用于构建智能辅导系统,帮助学生解决问题。
# 智能教育辅导系统
class IntelligentEducationTutor:
"""基于思维链的智能教育辅导系统"""
def __init__(
self,
knowledge_base: EducationKnowledgeBase,
problem_solver: ProblemSolver,
explanation_generator: ExplanationGenerator,
learning_path_planner: LearningPathPlanner
):
self.knowledge_base = knowledge_base
self.problem_solver = problem_solver
self.explanation_generator = explanation_generator
self.learning_path_planner = learning_path_planner
async def answer_question(self, student_id: str, question: str) -> Dict[str, Any]:
"""回答学生问题"""
# 检索相关知识
relevant_knowledge = await self.knowledge_base.retrieve(question)
# 解决问题
solution = await self.problem_solver.solve(question, relevant_knowledge)
# 生成解释
explanation = await self.explanation_generator.generate(
question, solution, relevant_knowledge
)
# 记录学生学习历史
await self.learning_path_planner.record_interaction(
student_id, question, solution
)
# 推荐学习资源
recommended_resources = await self.learning_path_planner.recommend_resources(
student_id, question
)
return {
"question": question,
"answer": solution["answer"],
"explanation": explanation,
"steps": solution.get("steps", []),
"recommended_resources": recommended_resources
}
async def create_learning_path(self, student_id: str, topic: str) -> Dict[str, Any]:
"""创建个性化学习路径"""
# 评估学生知识水平
knowledge_assessment = await self.learning_path_planner.assess_knowledge(
student_id, topic
)
# 生成学习路径
learning_path = await self.learning_path_planner.generate_path(
student_id, topic, knowledge_assessment
)
return {
"topic": topic,
"knowledge_assessment": knowledge_assessment,
"learning_path": learning_path
}