知识点回顾:
作业:一次稍微有点学术感觉的作业:
1、对inception网络在cifar10上观察精度
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置替代中文字体(适用于Linux)
plt.rcParams["font.family"] = ["WenQuanYi Micro Hei"]
plt.rcParams['axes.unicode_minus'] = False
class Inception(nn.Module):
def __init__(self, in_channels):
"""
Inception模块初始化,实现多尺度特征并行提取与融合
参数:
in_channels: 输入特征图的通道数
"""
super(Inception, self).__init__()
# 1x1卷积分支:降维并提取通道间特征关系
# 减少后续卷积的计算量,同时保留局部特征信息
self.branch1x1 = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=1), # 降维至64通道
nn.ReLU() # 引入非线性激活
)
# 3x3卷积分支:通过1x1卷积降维后使用3x3卷积捕捉中等尺度特征
# 先降维减少计算量,再进行空间特征提取
self.branch3x3 = nn.Sequential(
nn.Conv2d(in_channels, 96, kernel_size=1), # 降维至96通道
nn.ReLU(),
nn.Conv2d(96, 128, kernel_size=3, padding=1), # 3x3卷积,保持空间尺寸不变
nn.ReLU()
)
# 5x5卷积分支:通过1x1卷积降维后使用5x5卷积捕捉大尺度特征
# 较大的感受野用于提取更全局的结构信息
self.branch5x5 = nn.Sequential(
nn.Conv2d(in_channels, 16, kernel_size=1), # 大幅降维至16通道
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=5, padding=2), # 5x5卷积,保持空间尺寸不变
nn.ReLU()
)
# 池化分支:通过池化操作保留全局信息并降维
# 增强特征的平移不变性
self.branch_pool = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1), # 3x3最大池化,保持尺寸
nn.Conv2d(in_channels, 32, kernel_size=1), # 降维至32通道
nn.ReLU()
)
def forward(self, x):
"""
前向传播函数,并行计算四个分支并在通道维度拼接
参数:
x: 输入特征图,形状为[batch_size, in_channels, height, width]
返回:
拼接后的特征图,形状为[batch_size, 256, height, width]
"""
# 注意,这里是并行计算四个分支
branch1x1 = self.branch1x1(x) # 输出形状: [batch_size, 64, height, width]
branch3x3 = self.branch3x3(x) # 输出形状: [batch_size, 128, height, width]
branch5x5 = self.branch5x5(x) # 输出形状: [batch_size, 32, height, width]
branch_pool = self.branch_pool(x) # 输出形状: [batch_size, 32, height, width]
# 在通道维度(dim=1)拼接四个分支的输出
# 总通道数: 64 + 128 + 32 + 32 = 256
outputs = [branch1x1, branch3x3, branch5x5, branch_pool]
return torch.cat(outputs, dim=1)
class InceptionNet(nn.Module):
def __init__(self, num_classes=10):
super(InceptionNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.inception1 = Inception(64)
self.inception2 = Inception(256)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.inception1(x)
x = self.inception2(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 数据预处理(与原代码一致)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 初始化模型、损失函数、优化器
model = InceptionNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, # 指定要控制的优化器(这里是Adam)
mode='min', # 监测的指标是"最小化"(如损失函数)
patience=3, # 如果连续3个epoch指标没有改善,才降低LR
factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
# 记录每个 iteration 的损失
all_iter_losses = [] # 存储所有 batch 的损失
iter_indices = [] # 存储 iteration 序号
# 记录每个 epoch 的准确率和损失
train_acc_history = []
test_acc_history = []
train_loss_history = []
test_loss_history = []
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device) # 移至GPU
optimizer.zero_grad() # 梯度清零
output = model(data) # 前向传播
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
# 记录当前 iteration 的损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计准确率和损失
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 每100个批次打印一次训练信息
if (batch_idx + 1) % 100 == 0:
print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
# 计算当前epoch的平均训练损失和准确率
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_acc_history.append(epoch_train_acc)
train_loss_history.append(epoch_train_loss)
# 测试阶段
model.eval() # 设置为评估模式
test_loss = 0
correct_test = 0
total_test = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
test_acc_history.append(epoch_test_acc)
test_loss_history.append(epoch_test_loss)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# 绘制所有 iteration 的损失曲线
plot_iter_losses(all_iter_losses, iter_indices)
# 绘制每个 epoch 的准确率和损失曲线
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('每个 Iteration 的训练损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
# 绘制准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和测试准确率')
plt.legend()
plt.grid(True)
# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和测试损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 8. 执行训练和测试
epochs = 20 # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
2、消融实验:引入残差机制和cbam模块分别进行消融
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置替代中文字体(适用于Linux)
plt.rcParams["font.family"] = ["WenQuanYi Micro Hei"]
plt.rcParams['axes.unicode_minus'] = False
import torch
import torch.nn as nn
import torch.nn.functional as F
# 通道注意力
class ChannelAttention(nn.Module):
def __init__(self, in_channels, ratio=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // ratio, bias=False),
nn.ReLU(),
nn.Linear(in_channels // ratio, in_channels, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, h, w = x.shape
avg_out = self.fc(self.avg_pool(x).view(b, c))
max_out = self.fc(self.max_pool(x).view(b, c))
attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
return x * attention
# 空间注意力模块
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
pool_out = torch.cat([avg_out, max_out], dim=1)
attention = self.conv(pool_out)
return x * self.sigmoid(attention)
# CBAM模块
class CBAM(nn.Module):
def __init__(self, in_channels, ratio=16, kernel_size=7):
super().__init__()
self.channel_attn = ChannelAttention(in_channels, ratio)
self.spatial_attn = SpatialAttention(kernel_size)
def forward(self, x):
x = self.channel_attn(x)
x = self.spatial_attn(x)
return x
# 集成CBAM的Inception模块
class InceptionWithCBAM(nn.Module):
def __init__(self, in_channels, use_cbam=True):
"""
集成CBAM注意力机制的Inception模块
参数:
in_channels: 输入特征图的通道数
use_cbam: 是否使用CBAM,默认为True
"""
super(InceptionWithCBAM, self).__init__()
# 1x1卷积分支
self.branch1x1 = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=1),
nn.ReLU()
)
# 为1x1分支添加CBAM(如果启用)
self.branch1x1_cbam = CBAM(64) if use_cbam else nn.Identity()
# 3x3卷积分支
self.branch3x3 = nn.Sequential(
nn.Conv2d(in_channels, 96, kernel_size=1),
nn.ReLU(),
nn.Conv2d(96, 128, kernel_size=3, padding=1),
nn.ReLU()
)
# 为3x3分支添加CBAM(如果启用)
self.branch3x3_cbam = CBAM(128) if use_cbam else nn.Identity()
# 5x5卷积分支
self.branch5x5 = nn.Sequential(
nn.Conv2d(in_channels, 16, kernel_size=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=5, padding=2),
nn.ReLU()
)
# 为5x5分支添加CBAM(如果启用)
self.branch5x5_cbam = CBAM(32) if use_cbam else nn.Identity()
# 池化分支
self.branch_pool = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, 32, kernel_size=1),
nn.ReLU()
)
# 为池化分支添加CBAM(如果启用)
self.branch_pool_cbam = CBAM(32) if use_cbam else nn.Identity()
# 是否使用CBAM
self.use_cbam = use_cbam
def forward(self, x):
# 计算各个分支
branch1x1 = self.branch1x1(x)
# 应用CBAM注意力
if self.use_cbam:
branch1x1 = self.branch1x1_cbam(branch1x1)
branch3x3 = self.branch3x3(x)
if self.use_cbam:
branch3x3 = self.branch3x3_cbam(branch3x3)
branch5x5 = self.branch5x5(x)
if self.use_cbam:
branch5x5 = self.branch5x5_cbam(branch5x5)
branch_pool = self.branch_pool(x)
if self.use_cbam:
branch_pool = self.branch_pool_cbam(branch_pool)
# 拼接输出
return torch.cat([branch1x1, branch3x3, branch5x5, branch_pool], dim=1)
# 集成CBAM的InceptionNet
class InceptionNetWithCBAM(nn.Module):
def __init__(self, num_classes=10, use_cbam=True):
super(InceptionNetWithCBAM, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# 第一个Inception模块(带CBAM)
self.inception1 = InceptionWithCBAM(64, use_cbam)
# 第二个Inception模块(带CBAM)
self.inception2 = InceptionWithCBAM(256, use_cbam)
# 为整个网络添加全局CBAM(可选)
self.global_cbam = CBAM(256) if use_cbam else nn.Identity()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.inception1(x)
x = self.inception2(x)
# 应用全局CBAM(可选)
if hasattr(self, 'global_cbam'):
x = self.global_cbam(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 数据预处理(与原代码一致)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 初始化模型、损失函数、优化器
model = InceptionNetWithCBAM().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, # 指定要控制的优化器(这里是Adam)
mode='min', # 监测的指标是"最小化"(如损失函数)
patience=3, # 如果连续3个epoch指标没有改善,才降低LR
factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
# 记录每个 iteration 的损失
all_iter_losses = [] # 存储所有 batch 的损失
iter_indices = [] # 存储 iteration 序号
# 记录每个 epoch 的准确率和损失
train_acc_history = []
test_acc_history = []
train_loss_history = []
test_loss_history = []
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device) # 移至GPU
optimizer.zero_grad() # 梯度清零
output = model(data) # 前向传播
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
# 记录当前 iteration 的损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计准确率和损失
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 每100个批次打印一次训练信息
if (batch_idx + 1) % 100 == 0:
print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
# 计算当前epoch的平均训练损失和准确率
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_acc_history.append(epoch_train_acc)
train_loss_history.append(epoch_train_loss)
# 测试阶段
model.eval() # 设置为评估模式
test_loss = 0
correct_test = 0
total_test = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
test_acc_history.append(epoch_test_acc)
test_loss_history.append(epoch_test_loss)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# 绘制所有 iteration 的损失曲线
plot_iter_losses(all_iter_losses, iter_indices)
# 绘制每个 epoch 的准确率和损失曲线
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('每个 Iteration 的训练损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
# 绘制准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和测试准确率')
plt.legend()
plt.grid(True)
# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和测试损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 8. 执行训练和测试
epochs = 20 # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")