Python_day38Dataset和Dataloader类

DAY 38

在遇到大规模数据集时,显存常常无法一次性存储所有数据,所以需要使用分批训练的方法。为此,PyTorch提供了DataLoader类,该类可以自动将数据集切分为多个批次batch,并支持多线程加载数据。此外,还存在Dataset类,该类可以定义数据集的读取方式和预处理方式。

  1. DataLoader类:决定数据如何加载
  2. Dataset类:告诉程序去哪里找数据,如何读取单个样本,以及如何预处理。

为了引入这些概念,我们现在接触一个新的而且非常经典的数据集:MNIST手写数字数据集。该数据集包含60000张训练图片和10000张测试图片,每张图片大小为28*28像素,共包含10个类别。因为每个数据的维度比较小,所以既可以视为结构化数据,用机器学习、MLP训练,也可以视为图像数据,用卷积神经网络训练。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt

# 设置随机种子,确保结果可复现
torch.manual_seed(42)
torchvision
├── datasets       # 视觉数据集(如 MNIST、CIFAR)
├── transforms     # 视觉数据预处理(如裁剪、翻转、归一化)
├── models         # 预训练模型(如 ResNet、YOLO)
├── utils          # 视觉工具函数(如目标检测后处理)
└── io             # 图像/视频 IO 操作
# 1. 数据预处理,该写法非常类似于管道pipeline
# transforms 模块提供了一系列常用的图像预处理操作

# 先归一化,再标准化
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)

这里稍微有点反逻辑,正常思路应该是先有数据集,后续再处理。但是在pytorch的思路是,数据在加载阶段就处理结束。

一、Dataset类

现在我们想要取出来一个图片,看看长啥样,因为datasets.MNIST本质上集成了torch.utils.data.Dataset,所以自然需要有对应的方法。

import matplotlib.pyplot as plt

# 随机选择一张图片,可以重复运行,每次都会随机选择
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item() # 随机选择一张图片的索引
# len(train_dataset) 表示训练集的图片数量;size=(1,)表示返回一个索引;torch.randint() 函数用于生成一个指定范围内的随机数,item() 方法将张量转换为 Python 数字
image, label = train_dataset[sample_idx] # 获取图片和标签

这里很难理解,为什么train_dataset[sample_idx]可以获取到图片和标签,是因为 datasets.MNIST这个类继承了torch.utils.data.Dataset类,这个类中有一个方法__getitem__,这个方法会返回一个tuple,tuple中第一个元素是图片,第二个元素是标签。

我们来详细介绍下torch.utils.data.Dataset类

PyTorch 的torch.utils.data.Dataset是一个抽象基类,所有自定义数据集都需要继承它并实现两个核心方法:

  • len():返回数据集的样本总数。
  • getitem(idx):根据索引idx返回对应样本的数据和标签。

PyTorch 要求所有数据集必须实现__getitem__和__len__,这样才能被DataLoader等工具兼容。这是一种接口约定,类似函数参数的规范。这意味着,如果你要创建一个自定义数据集,你需要实现这两个方法,否则PyTorch将无法识别你的数据集。

在 Python 中,getitem__和__len 是类的特殊方法(也叫魔术方法 ),它们不是像普通函数那样直接使用,而是需要在自定义类中进行定义,来赋予类特定的行为。以下是关于这两个方法具体的使用方式:

__getitem__方法

__getitem__方法用于让对象支持索引操作,当使用[]语法访问对象元素时,Python 会自动调用该方法。

# 示例代码
class MyList:
    def __init__(self):
        self.data = [10, 20, 30, 40, 50]

    def __getitem__(self, idx):
        return self.data[idx]

# 创建类的实例
my_list_obj = MyList()
# 此时可以使用索引访问元素,这会自动调用__getitem__方法
print(my_list_obj[2])  # 输出:30
30

通过定义__getitem__方法,让MyList类的实例能够像 Python 内置的列表一样使用索引获取元素。

__len__方法

__len__方法用于返回对象中元素的数量,当使用内置函数len()作用于对象时,Python 会自动调用该方法。

class MyList:
    def __init__(self):
        self.data = [10, 20, 30, 40, 50]

    def __len__(self):
        return len(self.data)

# 创建类的实例
my_list_obj = MyList()
# 使用len()函数获取元素数量,这会自动调用__len__方法
print(len(my_list_obj))  # 输出:5
5

这里定义的__len__方法,使得MyList类的实例可以像普通列表一样被len()函数调用获取长度。


# minist数据集的简化版本
class MNIST(Dataset):
    def __init__(self, root, train=True, transform=None):
        # 初始化:加载图片路径和标签
        self.data, self.targets = fetch_mnist_data(root, train) # 这里假设 fetch_mnist_data 是一个函数,用于加载 MNIST 数据集的图片路径和标签
        self.transform = transform # 预处理操作
        
    def __len__(self): 
        return len(self.data)  # 返回样本总数
    
    def __getitem__(self, idx): # 获取指定索引的样本
        # 获取指定索引的图像和标签
        img, target = self.data[idx], self.targets[idx]
        
        # 应用图像预处理(如ToTensor、Normalize)
        if self.transform is not None: # 如果有预处理操作
            img = self.transform(img) # 转换图像格式
        # 这里假设 img 是一个 PIL 图像对象,transform 会将其转换为张量并进行归一化
            
        return img, target  # 返回处理后的图像和标签

  • Dataset = 厨师(准备单个菜品)
  • DataLoader = 服务员(将菜品按订单组合并上桌)

预处理(如切菜、调味)属于厨师的工作,而非服务员。所以在dataset就需要添加预处理步骤。

# 可视化原始图像(需要反归一化)
def imshow(img):
    img = img * 0.3081 + 0.1307  # 反标准化
    npimg = img.numpy()
    plt.imshow(npimg[0], cmap='gray') # 显示灰度图像
    plt.show()

print(f"Label: {label}")
imshow(image)
Label: 6

Python_day38Dataset和Dataloader类_第1张图片

二、Dataloader类

该类比较简单,很好理解

# 3. 创建数据加载器
train_loader = DataLoader(
    train_dataset,
    batch_size=64, # 每个批次64张图片,一般是2的幂次方,这与GPU的计算效率有关
    shuffle=True # 随机打乱数据
)

test_loader = DataLoader(
    test_dataset,
    batch_size=1000 # 每个批次1000张图片
    # shuffle=False # 测试时不需要打乱数据
)

三、总结

维度 Dataset DataLoader
核心职责 定义“数据是什么”和“如何获取单个样本” 定义“如何批量加载数据”和“加载策略”
核心方法 __getitem__(获取单个样本)、__len__(样本总数) 无自定义方法,通过参数控制加载逻辑
预处理位置 __getitem__中通过transform执行预处理 无预处理逻辑,依赖Dataset返回的预处理后数据
并行处理 无(仅单样本处理) 支持多进程加载(num_workers>0
典型参数 root(数据路径)、transform(预处理) batch_sizeshufflenum_workers

核心结论

  • Dataset:定义数据的内容和格式(即“如何获取单个样本”),包括:

    • 数据存储路径/来源(如文件路径、数据库查询)。
    • 原始数据的读取方式(如图像解码为PIL对象、文本读取为字符串)。
    • 样本的预处理逻辑(如裁剪、翻转、归一化等,通常通过transform参数实现)。
    • 返回值格式(如(image_tensor, label))。
  • DataLoader:定义数据的加载方式和批量处理逻辑(即“如何高效批量获取数据”),包括:

    • 批量大小(batch_size)。
    • 是否打乱数据顺序(shuffle)。

知识点回顾:

  1. Dataset类的__getitem__和__len__方法(本质是python的特殊方法)
  2. Dataloader类
  3. minist手写数据集的了解

作业:

了解下cifar数据集,尝试获取其中一张图片

方法一:

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
 
# 定义数据转换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
 
# 加载CIFAR-10训练集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1, 
                                         shuffle=True)
 
# 获取一张图片
dataiter = iter(trainloader)
images, labels = next(dataiter)
 
# 显示图片
def imshow(img):
    img = img / 2 + 0.5  # 反归一化
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
 
print(f'Label: {trainset.classes[labels[0]]}')
imshow(images[0])

方法二:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
 
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
 
# 1. 数据预处理,该写法非常类似于管道pipeline
# transforms 模块提供了一系列常用的图像预处理操作
 
# CIFAR-10的归一化和标准化转换
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize(
        (0.4914, 0.4822, 0.4465),  # CIFAR-10数据集的RGB通道均值
        (0.2470, 0.2435, 0.2616)   # CIFAR-10数据集的RGB通道标准差
    )
])
# 2. 加载cifar-10数据集,如果没有会自动下载
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)
 
test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=transform
)
 
# 定义类别
classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')
 
# 随机选择一张图片
idx = torch.randint(0, len(train_dataset), size=(1,))
img, label = train_dataset[idx]
 
# 反标准化函数
def denormalize(x):
    mean = torch.tensor([0.4914, 0.4822, 0.4465])
    std = torch.tensor([0.2470, 0.2435, 0.2616])
    # CIFAR-10是彩色图像,需要对所有通道进行反标准化
    return x * std[:, None, None] + mean[:, None, None]
 
# 显示图片
plt.figure()
plt.imshow(denormalize(img).permute(1, 2, 0))  # 调整通道顺序以正确显示彩色图像
plt.title(f'Label: {classes[label]}')
plt.axis('off')
plt.show()
 
 
# 3. 创建数据加载器
train_loader = DataLoader(
    train_dataset,
    batch_size=64, # 每个批次64张图片,一般是2的幂次方,这与GPU的计算效率有关
    shuffle=True # 随机打乱数据
)

@浙大疏锦行

你可能感兴趣的:(Python_60,python,开发语言)