代码示例:
% 基于Transformer-LSTM+SHAP可解释性分析的回归预测Matlab代码
% 多输入单输出版本
% 步骤1:数据预处理
function [X_train, y_train, X_test, y_test] = prepareData(data, windowSize)
% 假设数据格式为 [N_samples x T_steps x N_features],y为单输出序列
N = size(data, 1); % 样本数
T = size(data, 2); % 时间步长
F = size(data, 3); % 特征数
% 划分训练集和测试集(示例:80%训练,20%测试)
trainIdx = 1:floor(0.8*N);
testIdx = floor(0.8*N)+1:N;
X_train = data(trainIdx, :, :);
y_train = data(trainIdx, :, end); % 假设最后一列为输出标签
X_test = data(testIdx, :, :);
y_test = data(testIdx, :, end);
% 构建滑动窗口数据集(例如:窗口大小为windowSize)
X_train_win = slidingWindow(X_train, windowSize);
y_train_win = slidingWindow(y_train, windowSize);
X_test_win = slidingWindow(X_test, windowSize);
y_test_win = slidingWindow(y_test, windowSize);
function X_win = slidingWindow(X, winSize)
X_win = [];
for i = 1:size(X, 1)
for t = 1:size(X, 2)-winSize+1
X_win(end+1, :, :) = X(i, t:t+winSize-1, :);
end
end
end
% 归一化(示例:Min-Max归一化到[0,1])
minX = min(X_train_win, [], 'all');
maxX = max(X_train_win, [], 'all');
X_train_win = (X_train_win - minX)./ (maxX - minX);
X_test_win = (X_test_win - minX)./ (maxX - minX);
% 输出处理后的数据
[X_train, y_train] = X_train_win, y_train_win;
[X_test, y_test] = X_test_win, y_test_win;
end
% 步骤2:构建Transformer-LSTM模型
function model = buildModel(inputSize, numHeads, hiddenSize, numLayers)
layers = [
sequenceInputLayer(inputSize) % 输入层(特征维度)
transformerEncoderLayer('NumHeads', numHeads, 'HiddenSize', hiddenSize) % Transformer编码器
lstmLayer(hiddenSize) % LSTM层
fullyConnectedLayer(1) % 输出层(单输出)
regressionLayer % 回归输出
];
model = layerGraph(layers);
end
% 步骤3:模型训练
function trainedModel = trainModel(model, X_train, y_train, opts)
% 训练选项(示例)
opts = trainingOptions('adam',...
'MaxEpochs', 100,...
'MiniBatchSize', 32,...
'Verbose', false,...
'Plots', 'training-progress');
% 训练模型
trainedModel = trainNetwork(X_train, y_train, model, opts);
end
% 步骤4:模型预测
function y_pred = predictModel(model, X_test)
y_pred = predict(trainedModel, X_test);
end
% 步骤5:SHAP值计算(基于LIME近似)
function shapValues = computeSHAP(model, X_test, numSamples)
% 使用LIME(局部线性解释)近似SHAP值
% 需要安装SHAPley值计算工具箱或自定义函数
% 假设使用第三方工具箱(例如:SHAP-Matlab)
% 生成扰动样本
perturbedX = generatePerturbedSamples(X_test, numSamples);
% 预测基线和扰动样本的输出
baseline = predict(model, X_test(1,:));
perturbedY = predict(model, perturbedX);
% 计算LIME解释(近似SHAP)
[shapValues, _] = limeExplanation(baseline, perturbedY, perturbedX);
end
% 步骤6:主函数示例
clear; close all; clc;
% 示例数据生成(假设多变量时间序列)
N = 1000; % 样本数
T = 50; % 时间步长
F = 5; % 特征数
data = randn(N, T, F);
y = sum(data, 3); % 假设输出为特征求和(示例)
% 超参数配置
windowSize = 10; % 滑动窗口大小
numHeads = 4;
hiddenSize = 128;
numLayers = 2;
% 数据预处理
[X_train, y_train, X_test, y_test] = prepareData(data, windowSize);
% 构建模型
model = buildModel(F*windowSize, numHeads, hiddenSize, numLayers);
% 训练模型
trainedModel = trainModel(model, X_train, y_train, []);
% 预测
y_pred = predictModel(trainedModel, X_test);
% 评估(示例:MSE)
mse = mean((y_pred - y_test).^2);
disp(['预测MSE:', num2str(mse)]);
% 计算SHAP值(示例:计算前10个样本)
numSamples = 100; % 扰动样本数量
shapValues = computeSHAP(trainedModel, X_test(1:10,:), numSamples);
% 可视化SHAP值(示例:特征重要性热力图)
% 假设shapValues为N x F矩阵,表示每个特征的SHAP值
heatmap(shapValues, 'Colormap', 'jet');
title('SHAP特征重要性热力图');
% 保存模型(可选)
save('TransformerLSTMModel.mat', 'trainedModel');
% 加载模型(示例)
% loadedModel = load('TransformerLSTMModel.mat');
% loadedModel.trainedModel;
关键部分解释:
[N_samples x T_steps x N_features]
,输出 y
为单变量时间序列。layerGraph
构建深度学习模型,包含 Transformer 编码器层、LSTM 层和全连接层。numHeads
)和隐藏层大小(hiddenSize
)。limeExplanation
函数需要自行实现或依赖外部工具箱。transformerEncoderLayer
,需确认版本支持。[批次大小 x 序列长度 x 特征数]
。可能的问题与优化: