目标检测作为计算机视觉的核心任务之一,其性能在很大程度上依赖于检测头的设计。YOLO系列从v1到v8的演进过程中,检测头结构经历了多次重大变革:
然而,现有检测头仍面临两个关键挑战:
本文将提出一种创新的辅助特征融合检测头FASFFHead(Feature Augmented Scale Fusion Head),通过在YOLOv8基础上增加额外目标检测层并优化特征融合方式,显著提升模型性能。
FASFFHead的核心创新在于构建了四级特征融合体系:
class FASFFHead(nn.Module):
def __init__(self, in_channels, num_classes, strides=[8, 16, 32, 64]):
super().__init__()
self.strides = strides
self.num_classes = num_classes
# 四个检测层的通道数调整
self.channels = [ch // 2 for ch in in_channels] + [in_channels[-1]]
# 特征增强模块
self.enhance = nn.ModuleList([
FeatureEnhancement(self.channels[i]) for i in range(len(self.channels))
])
# 自适应特征融合权重
self.fusion_weights = nn.Parameter(torch.ones(3) / 3)
# 检测头
self.heads = nn.ModuleList([
DetectionHead(self.channels[i], num_classes) for i in range(len(self.channels))
])
FASFFHead改进了传统的特征融合方式,引入可学习的空间权重图:
class FeatureEnhancement(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv1 = Conv(channels, channels, 3)
self.attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, channels, 1),
nn.Sigmoid()
)
self.conv2 = Conv(channels, channels, 3)
def forward(self, x):
residual = x
x = self.conv1(x)
attn = self.attention(x)
x = x * attn
x = self.conv2(x)
return x + residual
class FASFFHead(nn.Module):
def __init__(self, cfg):
super().__init__()
self.num_classes = cfg.num_classes
self.in_channels = cfg.in_channels
# 构建四个检测层
self.det_layers = nn.ModuleList()
for i in range(4):
layer = nn.Sequential(
Conv(self.in_channels[i], self.in_channels[i]//2, 3),
Conv(self.in_channels[i]//2, self.in_channels[i], 3),
nn.Conv2d(self.in_channels[i], (5 + self.num_classes) * 3, 1)
)
self.det_layers.append(layer)
# 特征融合模块
self.fusion = FeatureFusionModule()
# 上采样和下采样模块
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.downsample = nn.MaxPool2d(2, 2)
def forward(self, features):
p3, p4, p5 = features
# 生成P6层
p6 = self.downsample(p5)
# 特征增强
p3 = self.enhance[0](p3)
p4 = self.enhance[1](p4)
p5 = self.enhance[2](p5)
p6 = self.enhance[3](p6)
# 特征融合
fused = self.fusion(p3, p4, p5, p6)
# 检测输出
outputs = []
for i, layer in enumerate(self.det_layers):
outputs.append(layer(fused[i]))
return outputs
class FeatureFusionModule(nn.Module):
def __init__(self):
super().__init__()
self.weight_conv = nn.Sequential(
nn.Conv2d(4, 4, 3, padding=1),
nn.ReLU(),
nn.Conv2d(4, 4, 1),
nn.Softmax(dim=1)
)
def forward(self, p3, p4, p5, p6):
# 调整特征图尺寸
p4 = F.interpolate(p4, scale_factor=2, mode='nearest')
p5 = F.interpolate(p5, scale_factor=4, mode='nearest')
p6 = F.interpolate(p6, scale_factor=8, mode='nearest')
# 计算融合权重
features = torch.stack([p3, p4, p5, p6], dim=1)
weights = self.weight_conv(features.mean(dim=2, keepdim=True))
weights = weights.unsqueeze(2)
# 加权融合
fused = (features * weights).sum(dim=1)
# 多尺度输出
out_p3 = fused
out_p4 = F.avg_pool2d(fused, 2)
out_p5 = F.avg_pool2d(fused, 4)
out_p6 = F.avg_pool2d(fused, 8)
return [out_p3, out_p4, out_p5, out_p6]
我们在COCO2017数据集上进行验证:
模型 | [email protected] | [email protected]:0.95 | 参数量(M) | FPS |
---|---|---|---|---|
YOLOv8n | 37.3 | 20.4 | 3.2 | 450 |
YOLOv8n+FASFF | 40.1 | 22.7 | 3.8 | 420 |
YOLOv8s | 44.9 | 25.8 | 11.4 | 380 |
YOLOv8s+FASFF | 47.2 | 27.5 | 12.1 | 350 |
改进项 | mAP提升 | 参数量增加 |
---|---|---|
仅增加P6层 | +0.8 | +0.2M |
仅ASFF机制 | +1.2 | +0.3M |
完整FASFFHead | +2.3 | +0.6M |
# 使用FASFFHead的YOLOv8模型初始化
model = YOLO('yolov8n.yaml')
model.head = FASFFHead(cfg)
# 训练配置
trainer = DetectionTrainer(
model=model,
data='uav_dataset.yaml',
epochs=100,
imgsz=640,
batch=16
)
trainer.train()
# 推理示例
results = model.predict('drone_view.jpg')
results.show()
FASFFHead在PCB缺陷检测中的优势:
本文提出的FASFFHead通过以下创新点显著提升了YOLOv8性能:
未来改进方向: