python打卡第53天

知识点回顾:

  1. 对抗生成网络的思想:关注损失从何而来
  2. 生成器、判别器
  3. nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法
  4. leakyReLU介绍:避免relu的神经元失活现象
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
 
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
 
LATENT_DIM = 10     # 潜在空间的维度,这里根据任务复杂程度任选
EPOCHS = 10000      # 训练的回合数,一般需要比较长的时间
BATCH_SIZE = 32     # 每批次训练的样本数
LR = 0.0002         # 学习率
BETA1 = 0.5         # Adam优化器的参数
 
# 检查是否有可用的GPU,否则使用CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
 
# --- 2. 加载并预处理数据 ---
 
iris = load_iris()
X = iris.data
y = iris.target
 
# 只选择 'Setosa' (类别 0)
X_class0 = X[y == 0] # 一种简便写法
 
# 数据缩放到 [-1, 1]
scaler = MinMaxScaler(feature_range=(-1, 1)) 
X_scaled = scaler.fit_transform(X_class0) 
 
# 转换为 PyTorch Tensor 并创建 DataLoader
# 注意需要将数据类型转为 float
real_data_tensor = torch.from_numpy(X_scaled).float() 
dataset = TensorDataset(real_data_tensor)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
 
print(f"成功加载并预处理数据。用于训练的样本数量: {len(X_scaled)}")
print(f"数据特征维度: {X_scaled.shape[1]}")
# --- 3. 构建模型 ---
 
# (A) 生成器 (Generator)
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(LATENT_DIM, 16),
            nn.ReLU(),
            nn.Linear(16, 32),
            nn.ReLU(),
            nn.Linear(32, 4),# 最后的维度只要和目标数据对齐即可
            nn.Tanh() # 输出范围是 [-1, 1]
        )
    def forward(self, x):
        return self.model(x) # 因为没有像之前一样做定义x=某些东西,所以现在可以直接输出模型

 

你可能感兴趣的:(python,练习,python)