- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- 掌握 anime.js 的 shuffle:从入门到精通
木牛流马2077
anime.js入门教程arcgis
一、引言:anime.js与shuffle概述在现代Web开发中,动画效果已成为提升用户体验的关键要素。anime.js作为一个轻量级、功能强大的JavaScript动画库,凭借其简洁的API和强大的功能,成为众多开发者的首选。其中,shuffle作为anime.js提供的实用工具函数之一,能够帮助我们轻松实现元素的随机排列动画,为网页增添动态和交互性。本文将全面介绍anime.js的shuffl
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- hive的sql优化思路-明白底层运行逻辑
ycllycll
hivesqlhadoop
一、首先要明白底层map、shuffle、reduce的顺序之中服务器hdfs数据文件在内存与存储之中是怎么演变的,因为hive的性能瓶颈基本在内存,具体参考以下他人优秀文章:1.HiveSQL底层执行过程详细剖析2.HiveJOIN性能调优二是要明白hive对应的sql它底层的mapreduce的过程中sql字段的执行顺序,来理解map的key、value会填充什么值,才能深刻理解怎么一步一步的
- 【机器学习【9】】评估算法:数据集划分与算法泛化能力评估
roman_日积跬步-终至千里
#机器学习机器学习
文章目录一、数据集划分:训练集与评估集二、K折交叉验证:提升评估可靠性1.基本原理1.1.K折交叉验证基本原理1.2.逻辑回归算法与L22.基于K折交叉验证L2算法三、弃一交叉验证(Leave-One-Out)1、基本原理2、代码实现四、ShuffleSplit交叉验证1、基本原理2、为什么能降低方差3、代码测试五、选择建议在机器学习中,评估算法的核心目标是衡量模型在“未知数据”上的表现,而不是仅
- com本质论 pdf_如何使用PDF Arranger来对PDF文件进行编排和修改
weixin_39797780
com本质论pdfcreatprocess操作文件delphifedora如何隐藏顶部状态栏linux.bash_profile文件linuxc++编程pdf
PDFArranger是一个十分简单的GUI应用程序,能够帮助您拆分或合并PDF文档,以及旋转,裁剪和重新编排页面。所有前面提到的任务都可以通过交互式和直观的图形界面轻松完成。Pdfarranger是pdfshuffler的fork以及pikepdf的前端。PDFArranger在许多流行的GNU/Linux操作系统和MicrosoftWindows上都能良好地运行。它是使用GTK+和Python
- MapReduce 学习
chuanauc
mapreduce学习大数据
MapReduce的过程:mapshufflereduce其中,程序员需要实现的内容是:程序员手动实现Map任务的具体逻辑,将数据根据Map代码进行分割,返回(key,value)键值对然后这些(Key,Values)键值对先会被存放到磁盘,然后由MapReduce按照Key,进行排序,排序原则为,将同一个Key的键值对组织到一起,然后将同Key的键值对组,按照Key排序。而后将每个Map节点上找
- 1.线性神经网络--线性回归
温柔济沧海
深度学习神经网络线性回归python
1.1从零实现线性回归importrandomimporttorch#fromd2limporttorchasd2limportmatplotlib.pyplotaspltdeftrain_data_make(batch_size,X,y):num_examples=len(X)idx=list(range(num_examples))#生成0-999random.shuffle(idx)#样本需
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- 文本数据增强-同义词替换、随机交换、随机插入、随机删除
根据zhangy代码改写,主要针对千言问题匹配进行文本数据增强。依赖安装pipinstalljiebapipinstallsynonymseda.pyimportjiebaimportsynonymsimportrandomfromrandomimportshufflerandom.seed(2019)#停用词列表,默认使用哈工大停用词表f=open('stopwords/hit_stopword
- 头歌 MapReduce的编程开发-排序
敲代码的苦13
头歌mapreduce电脑大数据
任务描述本关任务:根据用户行为数据,编写MapReduce程序来统计出商品点击量排行。相关知识排序概述在MapReduce的Shuffle的过程中执行了三次排序,分别是:map中的溢写阶段:根据分区以及key进行快速排序。map中合并溢写文件:将同一分区的多个溢写文件进行归并排序,合成一个大的溢写文件。reduce输入阶段:将同一分区,来自不同maptask的数据文件进行归并排序。在MapRedu
- YOLO11改进|注意力机制篇|引入注意力机制Shuffle Attention
如果能为勤奋颁奖
YOLO11改进专栏YOLO
目录一、【ShuffleAttention】注意力机制1.1【ShuffleAttention】注意力介绍1.2【ShuffleAttention】核心代码二、添加【ShuffleAttention】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4三、yaml文件与运行3.1yaml文件3.2运行成功截图一、【ShuffleAttention】注意力机制1.1【Shuff
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- 【Flink】Flink自定义流分区器Partitioner、数据倾斜、CustomPartitionerWrapper
九师兄
flink大数据
1.概述20240118今日在群里看到一个人的流计算任务发生数据倾斜了。然后第一怀疑是上游不均匀,然后发现上游是均匀的。但是后面发现他这个分区器是一个新的shufflebybucket但是我在文章中:【Flink】FlinkUI上下游算子并发之间的数据传递方式Partitioner、流分区器记得好像没有这种类型。然后查看了一下,发现果然没有。
- 28 - ShuffleAttention模块
Leo Chaw
深度学习算法实现深度学习计算机视觉pytorch人工智能
论文《SA-NET:SHUFFLEATTENTIONFORDEEPCONVOLUTIONALNEURALNETWORKS》1、作用SA模块主要用于增强深度卷积网络在处理图像分类、对象检测和实例分割等任务时的性能。它通过在神经网络中引入注意力机制,使网络能够更加关注于图像中的重要特征,同时抑制不相关的信息。2、机制1、特征分组:SA模块首先将输入特征图沿通道维度分成多个子特征组,这样每个子特征组可以
- Spark Shuffle详解
zh_19995
spark大数据分布式数据仓库
Shuffle简介Shuffle描述着数据从maptask输出到reducetask输入的这段过程。shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。因为在分布式情况下,reducetask需要跨节点去拉取其它节点上的maptask结果。这一过程将会产生网络资源消耗和内存,磁
- 【STL】函数对象+常用算法
Cai junhao
C++算法c++stl考研笔记
文章目录STL-函数对象函数对象函数对象使用谓词一元谓词二元谓词内建函数对象算术仿函数关系仿函数STL-常用算法常用遍历算法for_eachtransform常用查找算法findfind_ifadjacent_findbinary_searchcountcount_if常用排序算法sortrandom_shufflemergereverse常用拷贝和替换算法copyreplacereplace_i
- Spark性能优化深度剖析:十大实战策略与案例解析
目录Spark核心优化原理资源调优实战技巧并行度优化指南广播变量高效应用数据倾斜终极解决方案Shuffle过程优化秘籍内存管理进阶技巧算子优化黄金法则真实案例深度解析全链路调优方案1.Spark核心优化原理Spark基于内存计算的特性使其比Hadoop快100倍,但实际性能取决于资源配置、数据倾斜处理、Shuffle优化等关键因素。核心优化公式:性能=资源效率×并行度×算法效率×数据均衡度内存计算
- SparkSQL 优化实操
社恐码农
sparksql
一、基础优化配置1.资源配置优化#提交Spark作业时的资源配置示例spark-submit\--masteryarn\--executor-memory8G\--executor-cores4\--num-executors10\--confspark.sql.shuffle.partitions=200\your_spark_app.py参数说明:executor-memory:每个Execu
- 突破协议限制:Python猴子补丁的动态魔力
钢铁男儿
流程Pythonpython网络开发语言
协议即契约,动态语言的可塑性让代码在运行时重生。问题根源:不可变序列的局限性协议缺失FrenchDeck实现了不可变序列协议(len和getitem),但缺少可变序列的关键方法setitem,导致无法就地修改元素位置。错误本质random.shuffle依赖元素赋值操作x[i]=x[j],抛出TypeError的根本原因是对象未实现可变容器协议。解决方案:猴子补丁技术剖析核心操作#定义元素赋值函数
- Python 接口:从协议到抽象基 类(使用猴子补丁在运行时实现协议)
钢铁男儿
流程Pythonpython开发语言
使用猴子补丁在运行时实现协议示例11-4中的FrenchDeck类有个重大缺陷:无法洗牌。几年前,第一次编写FrenchDeck示例时,我实现了shuffle方法。后来,我对Python风格有了深刻理解,我发现如果FrenchDeck实例的行为像序列,那么它就不需要shuffle方法,因为已经有random.shuffle函数可用,文档中说它的作用是“就地打乱序列x”(https://docs.p
- ResNet改进(45):结合通道混洗(ShuffleNet)的混合架构
点我头像干啥
ResNet改进【有效涨点!】机器学习人工智能深度学习算法
1.创新点分析今天我们将深入分析一个创新的卷积神经网络(CNN)实现,它巧妙地将经典的ResNet架构与新兴的通道混洗(ChannelShuffle)技术相结合。这个实现位于cnn_model.py文件中,展示了如何通过自定义模块来增强现有网络架构的性能。模型架构总览该实现定义了一个名为CustomResNet的类,它基于ResNet34架构,但在其中嵌入了自定义的ShuffleBlock模块。这
- 学习日记-day20-6.1
永日45670
学习
完成目标:知识点:1.集合_Collections集合工具类方法:staticbooleanaddAll(Collectionc,T...elements)->批量添加元素staticvoidshuffle(Listlist)->将集合中的元素顺序打乱staticvoidsort(Listlist)->将集合中的元素按照默认规则排序staticvoidsort(Listlist,Comparato
- yolov8添加注意力机制
LeonDL168
YOLOYOLOpython深度学习yolo数据集yolov8添加注意力机制yolov8/yolo11人工智能
在YOLOv8中添加注意力机制可以显著提升模型对关键特征的关注能力,从而提高检测精度。以下是几种主流注意力机制的实现方法和集成策略:1.注意力机制选择根据计算效率和效果,推荐以下几种注意力模块:CBAM:同时关注通道和空间维度,效果显著但计算开销较大。ECA:轻量级通道注意力,几乎不增加参数量。ShuffleAttention:高效的通道和空间注意力融合。SimAM:无需额外参数,基于神经元活跃度
- Hive的数据倾斜是什么?
安审若无
Hive性能优化及调优hivehadoop数据仓库
一、Hive数据倾斜的定义数据倾斜指在Hive分布式计算过程中,某一个或几个Task(如Map/Reduce任务)处理的数据量远大于其他Task,导致这些Task成为整个作业的性能瓶颈,甚至因内存不足而失败。数据倾斜通常发生在Shuffle阶段(如Join、GroupBy、Distinct等操作),本质是键分布不均匀导致的计算资源分配失衡。二、数据倾斜的原因1.数据源本身分布不均业务数据中某些键(
- spark- ResultStage 和 ShuffleMapStage介绍
大数据知识搬运工
spark学习spark大数据分布式
目录1.ShuffleMapStage(中间阶段)1.1作用1.2核心特性1.3示例2.ResultStage(最终结果阶段)2.1作用2.2核心特性2.3示例3.对比总结4.执行流程示例5.常见问题Q1:为什么需要区分两种Stage?**Q2:如何手动观察Stage划分?Q3:ShuffleMapStage的数据一定会落盘吗?在Spark的DAG调度模型中,Stage被划分为ResultStag
- spark shuffle的分区支持动态调整,而hive不支持
大数据知识搬运工
spark学习sparkhive大数据
根据Spark官方文档,SparkShuffle分区支持动态调整的核心原因在于其架构设计和执行模型的先进性:1.自适应查询执行(AQE)机制Spark3.0+引入的AQE特性允许在运行时动态优化执行计划,包括Shuffle分区调整:分区合并:通过spark.sql.adaptive.coalescePartitions参数,自动合并小分区(默认目标分区大小64MB)数据倾斜处理:自动将大分区拆分为
- spark 2.1 Stage and ResultStage and ShuffleMapStage
houzhizhen
sparkspark
Stage/***Astageisasetofparalleltasksallcomputingthesamefunctionthatneedtorunaspart*ofaSparkjob,whereallthetaskshavethesameshuffledependencies.EachDAGoftasksrun*bytheschedulerissplitupintostagesatthebo
- 机器学习dataloader中shuffle=True及使用随机种子控制随机性
行至568
机器学习实践机器学习人工智能python深度学习数据分析数据库
我们首先来看如下代码:train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)val_loader=Dataloader(val_dataset,batch_size=x=batch_size,shuffle=False)为什么train_loader的shuffle=True而val_loader的shuf
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1