这段代码实现了各种基本类型之间的乘法运算,包括与Var类型的乘法。
use core::ops::{Add, Mul, Neg};
use super::basic::{Z0, P1, N1, B0, B1, Integer, NonZero};
use crate::variable::{Var,Numeric};
// ========== Basic Type Multiplication ==========
// ========== 基本类型乘法 ==========
// ========== 0 * All ==========
// ========== 零乘以任何数 ==========
impl<I: Integer> Mul<I> for Z0 {
type Output = Self;
#[inline(always)]
fn mul(self, _rhs: I) -> Self::Output {
self // 0 * any = 0
}
}
// ========== 1 * All ==========
// ========== 一乘以任何数 ==========
impl<I: Integer> Mul<I> for P1 {
type Output = I;
#[inline(always)]
fn mul(self, rhs: I) -> Self::Output {
rhs // 1 * x = x
}
}
// ========== -1 * All ==========
// ========== 负一乘以任何数 ==========
impl<I: Integer + Neg> Mul<I> for N1 {
type Output = I::Output;
#[inline(always)]
fn mul(self, rhs: I) -> Self::Output {
-rhs // -1 * x = -x
}
}
// ========== B0 * All ==========
// ========== 以0结尾的二进制数乘法 ==========
// B0 * Z0 = 0
// 以0结尾的数乘以零
impl<H: NonZero> Mul<Z0> for B0<H> {
type Output = Z0;
#[inline(always)]
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
// B0 * NonZero = B0
// 以0结尾的数乘以非零数
//
// Explanation:
// B0 * I = (2*P)*I = 2*(P*I) = B0
// B0 * I = -B0<-N> * I = -B0<(-N)*I> = B0
// Therefore, B0 * I = B0
//
// 说明:
// B0 * I = (2*P)*I = 2*(P*I) = B0
// B0 * I = -B0<-N> * I = -B0<(-N)*I> = B0
// 因此,B0 * I = B0
impl<H: NonZero + Mul<I>, I: NonZero> Mul<I> for B0<H> {
type Output = B0<H::Output>;
#[inline(always)]
fn mul(self, _rhs: I) -> Self::Output {
B0::new() // 构造新的B0类型
}
}
// ========== B1 * All ==========
// ========== 以1结尾的二进制数乘法 ==========
// B1 * Z0 = 0
// 以1结尾的数乘以零
impl<H: NonZero> Mul<Z0> for B1<H> {
type Output = Z0;
#[inline(always)]
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
// B1 * NonZero = I + B0
// 以1结尾的数乘以非零数
//
// Explanation:
// B1 * I = (1 + B0
) * I = I + B0
// B1 * I = -B1 * I = -I * ((2*!N)+1)
// = -I * ((-2*(N+1))+1) = -I * ((-2*N)-1)
// = I * ((2*N)+1) = I + B0
// Therefore, B1 * I = I + B0
//
// 说明:
// B1 * I = (1 + B0
) * I = I + B0
// B1 * I = -B1 * I = -I * ((2*!N)+1)
// = -I * ((-2*(N+1))+1) = -I * ((-2*N)-1)
// = I * ((2*N)+1) = I + B0
// 因此,B1 * I = I + B0
impl<H: NonZero + Mul<I>, I: NonZero + Add<B0<<H as Mul<I>>::Output>>> Mul<I> for B1<H> {
type Output = I::Output;
#[inline(always)]
fn mul(self, i: I) -> Self::Output {
i + B0::new() // I + B0
}
}
/// Type alias for multiplication: `Prod = >::Output`
/// 乘法运算的类型别名:`Prod = >::Output`
pub type Prod<A, B> = <A as Mul<B>>::Output;
// ========== 与Var乘法(新增加) ==========
// ========== 0 * Var ==========
impl<T:Numeric> Mul<Var<T>> for Z0 {
type Output = Self;
#[inline(always)]
fn mul(self, _rhs: Var<T>) -> Self::Output {
self // 0 * any = 0
}
}
// ========== 1 * Var ==========
impl<T: Numeric> Mul<Var<T>> for P1 {
type Output = Var<T>;
#[inline(always)]
fn mul(self, rhs: Var<T>) -> Self::Output {
rhs // 1 * x = x
}
}
// ========== -1 * Var ==========
impl<T: Numeric> Mul<Var<T>> for N1
where
Var<T>: Neg,
{
type Output = <Var<T> as Neg>::Output;
#[inline(always)]
fn mul(self, rhs: Var<T>) -> Self::Output {
-rhs // -1 * x = -x
}
}
// ========== B0 * Var ==========
impl<H: NonZero, T:Numeric> Mul<Var<T>> for B0<H>
where
B0<H>: Integer,
Var<T>: Mul<Var<T>>,
{
type Output = Var<T>;
#[inline(always)]
fn mul(self, rhs: Var<T>) -> Self::Output {
Var(rhs.0 * T::from(self.to_i32()))
}
}
// ========== B1 * Var ==========
impl<H: NonZero, T:Numeric> Mul<Var<T>> for B1<H>
where
B1<H>: Integer,
Var<T>: Mul<Var<T>>,
{
type Output = Var<T>;
#[inline(always)]
fn mul(self, rhs: Var<T>) -> Self::Output {
Var(rhs.0 * T::from(self.to_i32()))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic_multiplication() {
// Test Z0 (0 * anything = 0)
// 测试零的乘法
let _: Z0 = Z0 * Z0;
let _: Z0 = Z0 * P1;
let _: Z0 = Z0 * N1;
// Test P1 (1 * anything = anything)
// 测试正一的乘法
let _: Z0 = P1 * Z0;
let _: P1 = P1 * P1;
let _: N1 = P1 * N1;
// Test N1 (-1 * anything = -anything)
// 测试负一的乘法
let _: Z0 = N1 * Z0;
let _: N1 = N1 * P1;
let _: P1 = N1 * N1;
}
#[test]
fn test_b0_multiplication() {
// B0 represents binary 10 (decimal 2)
// B0 表示二进制10(十进制2)
let b0_p1: B0<P1> = B0::new();
// 2 * 0 = 0
let _: Z0 = b0_p1 * Z0;
// 2 * 1 = 2 (B0)
let _: B0<P1> = b0_p1 * P1;
// 2 * (-1) = -2 (B0)
let _: B0<N1> = b0_p1 * N1;
}
#[test]
fn test_b1_multiplication() {
// B1 represents binary 11 (decimal 3)
// B1 表示二进制11(十进制3)
let b1_p1: B1<P1> = B1::new();
// 3 * 0 = 0
let _: Z0 = b1_p1 * Z0;
// 3 * 1 = 3 (B1)
// Note: This requires addition to be properly implemented
// 注意:这需要加法正确实现
// let _: B1 = b1_p1 * P1;
// 3 * (-1) = -3 (B1)
// let _: B1 = b1_p1 * N1;
}
// Helper function to create values
// 辅助函数创建值
fn _create_values() {
let _z0 = Z0;
let _p1 = P1;
let _n1 = N1;
let _b0_p1: B0<P1> = B0::new();
let _b1_p1: B1<P1> = B1::new();
}
}
impl<I: Integer> Mul<I> for Z0 {
type Output = Self;
fn mul(self, _rhs: I) -> Self::Output {
self // 0 * any = 0
}
}
零乘以任何整数类型都返回零
适用于所有实现Integer trait的类型
impl<I: Integer> Mul<I> for P1 {
type Output = I;
fn mul(self, rhs: I) -> Self::Output {
rhs // 1 * x = x
}
}
一乘以任何数返回该数本身
输出类型与被乘数类型相同
impl<I: Integer + Neg> Mul<I> for N1 {
type Output = I::Output;
fn mul(self, rhs: I) -> Self::Output {
-rhs // -1 * x = -x
}
}
负一乘以任何数返回该数的相反数
要求被乘数类型实现Neg trait
impl<H: NonZero> Mul<Z0> for B0<H> {
type Output = Z0;
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
impl<H: NonZero + Mul<I>, I: NonZero> Mul<I> for B0<H> {
type Output = B0<H::Output>;
fn mul(self, _rhs: I) -> Self::Output {
B0::new() // B0
}
}
表示二进制数乘以非零数的运算
数学原理:B0
* I = 2PI = B0
返回一个新的B0类型,其内部类型是H * I的结果
impl<H: NonZero> Mul<Z0> for B1<H> {
type Output = Z0;
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
任何数乘以零都返回零
impl<H: NonZero + Mul<I>, I: NonZero + Add<B0<<H as Mul<I>>::Output>>> Mul<I> for B1<H> {
type Output = I::Output;
fn mul(self, i: I) -> Self::Output {
i + B0::new() // I + B0
}
}
表示二进制数乘以非零数的运算
数学原理:B1
* I = (2P + 1)I = I + 2PI = I + B0
返回I + B0
实现了Z0、P1、N1、B0和B1与Var的乘法运算:
impl<T:Numeric> Mul<Var<T>> for Z0 {
type Output = Self;
fn mul(self, _rhs: Var<T>) -> Self::Output {
self // 0 * Var = 0
}
}
impl<T: Numeric> Mul<Var<T>> for P1 {
type Output = Var<T>;
fn mul(self, rhs: Var<T>) -> Self::Output {
rhs // 1 * Var = Var
}
}
impl<T: Numeric> Mul<Var<T>> for N1 {
type Output = <Var<T> as Neg>::Output;
fn mul(self, rhs: Var<T>) -> Self::Output {
-rhs // -1 * Var = -Var
}
}
impl<H: NonZero, T:Numeric> Mul<Var<T>> for B0<H> {
type Output = Var<T>;
fn mul(self, rhs: Var<T>) -> Self::Output {
Var(rhs.0 * T::from(self.to_i32()))
}
}
impl<H: NonZero, T:Numeric> Mul<Var<T>> for B1<H> {
type Output = Var<T>;
fn mul(self, rhs: Var<T>) -> Self::Output {
Var(rhs.0 * T::from(self.to_i32()))
}
}
pub type Prod<A, B> = <A as Mul<B>>::Output;
定义了一个类型别名Prod,表示A * B的结果类型
包含了各种乘法运算的测试用例,验证实现的正确性。
这段代码实现了一个类型级别的乘法系统:
支持基本整数类型(Z0, P1, N1)的乘法
支持二进制表示的数(B0, B1)的乘法
支持与Var类型的乘法
通过Rust的类型系统在编译期完成乘法运算的类型计算
这种实现常用于类型级编程,可以在编译期进行数值计算和类型检查。