作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化
进阶:并拆分成多个文件
我选择图像分类,该数据集分为六类,包含建筑、森林、冰川、山脉、海洋和街道。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import numpy as np
import matplotlib.pyplot as plt
import os
from PIL import Image
import warnings
# 设置随机种子
torch.manual_seed(42)
np.random.seed(42)
# 数据预处理:转换为张量 + 归一化 + Resize到64x64
transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
trainset = ImageFolder(root='./intel_image_classification/seg_train/seg_train', transform=transform)
testset = ImageFolder(root='./intel_image_classification/seg_test/seg_test', transform=transform)
classes = trainset.classes
# 构建CNN模型
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 6)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x))) # 64 -> 32
x = self.pool(F.relu(self.conv2(x))) # 32 -> 16
x = self.pool(F.relu(self.conv3(x))) # 16 -> 8
x = x.view(-1, 128 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建模型及设备
def create_model():
model = SimpleCNN()
print("模型已创建")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
return model.to(device), device
# 模型训练函数
def train_model(model, device, trainset, epochs=2):
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
model.train()
for epoch in range(epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(trainloader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print(f'[{epoch + 1}, {i + 1}] 损失: {running_loss / 100:.3f}')
running_loss = 0.0
print("训练完成")
# Grad-CAM 实现类
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
self.register_hooks()
def register_hooks(self):
def forward_hook(module, input, output):
self.activations = output.detach()
def backward_hook(module, grad_input, grad_output):
self.gradients = grad_output[0].detach()
self.target_layer.register_forward_hook(forward_hook)
self.target_layer.register_backward_hook(backward_hook)
def generate_cam(self, input_image, target_class=None):
model_output = self.model(input_image)
if target_class is None:
target_class = torch.argmax(model_output, dim=1).item()
self.model.zero_grad()
one_hot = torch.zeros_like(model_output)
one_hot[0, target_class] = 1
model_output.backward(gradient=one_hot)
gradients = self.gradients
activations = self.activations
weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
cam = torch.sum(weights * activations, dim=1, keepdim=True)
cam = F.relu(cam)
cam = F.interpolate(cam, size=(64, 64), mode='bilinear', align_corners=False)
cam = cam - cam.min()
cam = cam / cam.max() if cam.max() > 0 else cam
return cam.cpu().squeeze().numpy(), target_class
# 图像张量转换为numpy数组,用于可视化
def tensor_to_np(tensor):
img = tensor.cpu().numpy().transpose(1, 2, 0)
mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.5, 0.5, 0.5])
img = std * img + mean
img = np.clip(img, 0, 1)
return img
# 主函数入口(避免Windows多次导入问题)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False
model, device = create_model()
# 是否训练模型
train_model(model, device, trainset, epochs=20)
torch.save(model.state_dict(), 'intel_cnn.pth')
model.eval()
# Grad-CAM 可视化
idx = 300
image, label = testset[idx]
print(f"选择的图像类别: {classes[label]}")
input_tensor = image.unsqueeze(0).to(device)
grad_cam = GradCAM(model, model.conv3)
heatmap, pred_class = grad_cam.generate_cam(input_tensor)
# 可视化图像 + CAM
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f"原始图像: {classes[label]}")
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f"Grad-CAM热力图: {classes[pred_class]}")
plt.axis('off')
plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title("叠加热力图")
plt.axis('off')
plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()
@浙大疏锦行