以猫狗图像辨别的新数据集为例,用CNN网络进行训练并用Grad-CAM做可视化
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from sklearn.model_selection import train_test_split
import os
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
np.random.seed(42)
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 训练集数据增强
train_transform = transforms.Compose([
transforms.Resize((32, 32)), # 调整为32×32
transforms.RandomRotation(10),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 验证集仅需基础预处理
val_transform = transforms.Compose([
transforms.Resize((32, 32)), # 调整为32×32
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 数据集根目录
DATASET_ROOT = r'C:\Users\Lenovo\Desktop\archive\cats_vs_dogs_dataset'
# 定义数据变换(训练集含增强,验证集无增强)
train_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.RandomRotation(10),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载完整数据集(训练+验证)
full_dataset = datasets.ImageFolder(
root=DATASET_ROOT,
transform=train_transform # 初始使用训练集变换
)
# 划分训练集和验证集(8:2比例)
total_samples = len(full_dataset)
train_samples = int(0.8 * total_samples)
val_samples = total_samples - train_samples
# 随机划分(使用固定种子确保可复现)
torch.manual_seed(42)
train_dataset, val_dataset = random_split(
full_dataset,
[train_samples, val_samples],
generator=torch.Generator().manual_seed(42)
)
# 为验证集单独设置变换(移除数据增强)
val_dataset.dataset.transform = val_transform
# 创建数据加载器
batch_size = 32
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
pin_memory=True
)
# 查看数据集信息
class_names = full_dataset.classes
print(f"数据集类别: {class_names}")
print(f"训练集样本数: {len(train_dataset)}")
print(f"验证集样本数: {len(val_dataset)}")
class CNN(nn.Module):
def __init__(self, num_classes=2):
super(CNN, self).__init__()
# 卷积层配置
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) # 32→32
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # 32→16
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 16→16
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 16→8
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) # 8→8
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) # 8→4
# 全连接层输入维度:128通道 × 4×4特征图 = 2048
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, num_classes)
def forward(self, x):
x = self.pool1(self.relu1(self.bn1(self.conv1(x))))
x = self.pool2(self.relu2(self.bn2(self.conv2(x))))
x = self.pool3(self.relu3(self.bn3(self.conv3(x))))
# 展平
x = x.view(-1, 128 * 4 * 4)
x = self.dropout(self.relu3(self.fc1(x)))
x = self.fc2(x)
return x
def train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs):
best_acc = 0.0
best_model_path = 'best_cnn_model.pth'
all_iter_losses = []
iter_indices = []
train_acc_history = []
val_acc_history = []
train_loss_history = []
val_loss_history = []
for epoch in range(epochs):
# 训练阶段
model.train()
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 记录损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计准确率
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
if (batch_idx + 1) % 100 == 0:
print(f'Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} '
f'| Loss: {iter_loss:.4f} | Acc: {100.*correct/total:.2f}%')
# 计算训练指标
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_acc_history.append(epoch_train_acc)
train_loss_history.append(epoch_train_loss)
# 验证阶段
model.eval()
val_loss = 0
correct_val = 0
total_val = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_val += target.size(0)
correct_val += predicted.eq(target).sum().item()
epoch_val_loss = val_loss / len(val_loader)
epoch_val_acc = 100. * correct_val / total_val
val_acc_history.append(epoch_val_acc)
val_loss_history.append(epoch_val_loss)
# 更新学习率
scheduler.step(epoch_val_loss)
# 保存最佳模型
if epoch_val_acc > best_acc:
best_acc = epoch_val_acc
torch.save(model.state_dict(), best_model_path)
print(f'保存最佳模型 (Epoch {epoch+1} | Acc: {best_acc:.2f}%)')
print(f'Epoch {epoch+1}/{epochs} | Train Loss: {epoch_train_loss:.4f} | '
f'Train Acc: {epoch_train_acc:.2f}% | Val Acc: {epoch_val_acc:.2f}%')
# 加载最佳模型
model.load_state_dict(torch.load(best_model_path))
return best_acc, (train_acc_history, val_acc_history, train_loss_history, val_loss_history)
def plot_epoch_metrics(train_acc, val_acc, train_loss, val_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
# 绘制准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, val_acc, 'r-', label='验证准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和验证准确率')
plt.legend()
plt.grid(True)
# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, val_loss, 'r-', label='验证损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和验证损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
def visualize_gradcam(model, val_loader, class_names, device, num_samples=5):
# 选择目标层(最后一个卷积层)
target_layers = [model.conv3]
# 创建GradCAM对象
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=device.type == 'cuda')
model.eval()
fig, axes = plt.subplots(num_samples, 2, figsize=(10, 4*num_samples))
for i in range(num_samples):
# 获取样本
inputs, labels = next(iter(val_loader))
input_tensor = inputs[0].unsqueeze(0).to(device)
true_label = labels[0].item()
# 预测
with torch.no_grad():
outputs = model(input_tensor)
_, pred = torch.max(outputs, 1)
pred = pred.item()
# 生成Grad-CAM热力图
grayscale_cam = cam(input_tensor=input_tensor, targets=None)
grayscale_cam = grayscale_cam[0, :] # 取第一个样本的热力图
# 预处理原始图像用于可视化
img = input_tensor[0].cpu().permute(1, 2, 0).numpy()
img = (img * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406]))
img = np.clip(img, 0, 1)
# 叠加热力图
visualization = show_cam_on_image(img, grayscale_cam, use_rgb=True)
# 显示原始图像
axes[i, 0].imshow(img)
axes[i, 0].set_title(f'原始图像\n真实: {class_names[true_label]}, 预测: {class_names[pred]}')
axes[i, 0].axis('off')
# 显示Grad-CAM结果
axes[i, 1].imshow(visualization)
axes[i, 1].set_title('Grad-CAM热力图')
axes[i, 1].axis('off')
plt.tight_layout()
plt.show()
# 设备配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"使用设备: {device}")
# 初始化模型(适应32×32输入)
model = CNN(num_classes=len(class_names)).to(device)
# 定义损失函数、优化器和学习率调度器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', patience=3, factor=0.5, verbose=True
)
# 训练模型
print("开始训练CNN模型...")
best_acc, metrics = train(model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs=20)
print(f"训练完成!最佳验证准确率: {best_acc:.2f}%")
# 绘制训练指标
train_acc, val_acc, train_loss, val_loss = metrics
plot_epoch_metrics(train_acc, val_acc, train_loss, val_loss)
# 可视化Grad-CAM结果
visualize_gradcam(model, val_loader, class_names, device, num_samples=5)
使用设备: cuda
开始训练CNN模型...
Epoch 1/20 | Batch 100/541 | Loss: 0.6872 | Acc: 61.47%
Epoch 1/20 | Batch 200/541 | Loss: 0.6624 | Acc: 64.19%
Epoch 1/20 | Batch 300/541 | Loss: 0.5880 | Acc: 66.16%
Epoch 1/20 | Batch 400/541 | Loss: 0.5256 | Acc: 67.46%
Epoch 1/20 | Batch 500/541 | Loss: 0.5808 | Acc: 68.56%
保存最佳模型 (Epoch 1 | Acc: 76.11%)
Epoch 1/20 | Train Loss: 0.5969 | Train Acc: 68.75% | Val Acc: 76.11%
Epoch 2/20 | Batch 100/541 | Loss: 0.5069 | Acc: 73.16%
Epoch 2/20 | Batch 200/541 | Loss: 0.4214 | Acc: 74.80%
Epoch 2/20 | Batch 300/541 | Loss: 0.5005 | Acc: 75.47%
Epoch 2/20 | Batch 400/541 | Loss: 0.4932 | Acc: 75.99%
Epoch 2/20 | Batch 500/541 | Loss: 0.2958 | Acc: 76.34%
保存最佳模型 (Epoch 2 | Acc: 77.15%)
Epoch 2/20 | Train Loss: 0.4893 | Train Acc: 76.54% | Val Acc: 77.15%
Epoch 3/20 | Batch 100/541 | Loss: 0.5376 | Acc: 80.34%
Epoch 3/20 | Batch 200/541 | Loss: 0.4955 | Acc: 80.27%
Epoch 3/20 | Batch 300/541 | Loss: 0.3023 | Acc: 79.84%
Epoch 3/20 | Batch 400/541 | Loss: 0.4594 | Acc: 79.97%
Epoch 3/20 | Batch 500/541 | Loss: 0.3883 | Acc: 80.11%
保存最佳模型 (Epoch 3 | Acc: 81.61%)
Epoch 3/20 | Train Loss: 0.4306 | Train Acc: 80.06% | Val Acc: 81.61%
Epoch 4/20 | Batch 100/541 | Loss: 0.3557 | Acc: 81.66%
Epoch 4/20 | Batch 200/541 | Loss: 0.2884 | Acc: 82.02%
...
Epoch 20/20 | Batch 400/541 | Loss: 0.0146 | Acc: 99.88%
Epoch 20/20 | Batch 500/541 | Loss: 0.0139 | Acc: 99.88%
Epoch 20/20 | Train Loss: 0.0056 | Train Acc: 99.88% | Val Acc: 85.62%
训练完成!最佳验证准确率: 85.96%