首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
再遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
最后返回统计值 count 就可以了
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
int res = 0;
unordered_map<int, int> map;
for(int num1 : nums1){
for(int num2 : nums2){
map[num1 + num2]++;
}
}
for(int num3 : nums3){
for(int num4 : nums4){
if(map.count(0-(num3 + num4))){
res += map[0-(num3 + num4)];
}
}
}
return res;
}
};
因为题目说只有小写字母,那可以采用空间换取时间的哈希策略,用一个长度为26的数组来记录magazine里字母出现的次数。
然后再用ransomNote去验证这个数组是否包含了ransomNote所需要的所有字母。
依然是数组在哈希法中的应用。
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int record[26] = {0};
if(ransomNote.size() > magazine.size())
return false;
for(int i = 0; i < magazine.size(); i++){
record[magazine[i] - 'a']++;
}
for(int i = 0; i < ransomNote.size(); i++){
record[ransomNote[i] - 'a']--;
if(record[ransomNote[i] - 'a'] < 0){
return false;
}
}
return true;
}
};
其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。
而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。
接下来我来介绍另一个解法:双指针法,这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。
拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
时间复杂度:O(n^2)。
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for(int i = 0; i < nums.size(); i++){
if(nums[i] > 0)
return result;
if(i > 0 && nums[i] == nums[i-1])
continue;
int left = i + 1;
int right = nums.size() - 1;
while(right > left){
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else{
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
while(right > left && nums[right] == nums[right - 1]) right--;
while(right > left && nums[left] == nums[left + 1]) left++;
right--;
left++;
}
}
}
return result;
}
};
四数之和,和15.三数之和是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 的基础上再套一层for循环。
但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[k] > target && (nums[k] >=0 || target >= 0)就可以了。
15.三数之和的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n2),四数之和的时间复杂度是O(n3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};