AI study notes[4]

文章目录

  • theorem of implicit function
  • references

theorem of implicit function

  1. there are a system of m equations in n variables:

f i ( x ) = 0 , i = 0 , 1 , . . . , m f_i(x)=0,i=0,1,...,m fi(x)=0,i=0,1,...,m
Can the m variables,such as x 1 , x 2 , . . . , x m x_1,x_2,...,x_m x1,x2,...,xm, be defined as implicit functions of the other n-m variables such as x m + 1 , . . . , x n x_{m+1},...,x_n xm+1,...,xn?
can the system determines m variables ?

  1. let x 0 ∈ R n x_0 \in R^n x0Rn and satisfy the following conditions:
  • f i ( x 0 ) = 0 f_i(x_0)=0 fi(x0)=0
  • the function f i ∈ C 1 ( i = 1 , . . . , m ) f_i \in C^1(i=1,...,m) fiC1(i=1,...,m) in a certain neighborhood of x 0 x_0 x0
  • on condition that the Jacobian matrix of the system about variables such as x 1 , x 2 , . . . , x m x_1,x_2,...,x_m x1,x2,...,xm
    J f = ∂ f ∂ x = ( ∂ f 1 ( x 0 ) ∂ x 1 ⋯ ∂ f 1 ( x 0 ) ∂ x n ⋮ ⋱ ⋮ ∂ f m ( x 0 ) ∂ x 1 ⋯ ∂ f m ( x 0 ) ∂ x n ) ≠ 0 J_{\mathbf{f}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1(x_0)}{\partial x_1} & \cdots & \frac{\partial f_1(x_0)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(x_0)}{\partial x_1} & \cdots & \frac{\partial f_m(x_0)}{\partial x_n} \end{pmatrix} \neq 0 Jf=xf= x1f1(x0)x1fm(x0)xnf1(x0)xnfm(x0) =0
    , a neighborhood of x ˉ 0 = ( x m + 1 0 , . . , x n 0 ) ∈ R n − m \bar x_0=({x_{m+1}}_0,..,{x_n}_0) \in R^{n-m} xˉ0=(xm+10,..,xn0)Rnm exists leaded to having function g i ( x ˉ ) ( i = 1 , 2 , . . . . m ) g_i(\bar x)(i=1,2,....m) gi(xˉ)(i=1,2,....m) for x ˉ = x m + 1 . . . , x n \bar x={x_{m+1}...,x_n} xˉ=xm+1...,xnin the neighborhood of x ˉ 0 \bar x_0 xˉ0 . the function of g i ( x ˉ ) ( i = 1 , 2 , . . . . m ) g_i(\bar x)(i=1,2,....m) gi(xˉ)(i=1,2,....m) satisfy The following points:
    • g i ( x ˉ ) ( i = 1 , 2 , . . . . m ) ∈ C 1 g_i(\bar x)(i=1,2,....m) \in C^1 gi(xˉ)(i=1,2,....m)C1,one continuous function.
    • x i 0 = g i ( x ˉ 0 ) ( i = 1 , 2 , . . . . m ) {x_i}_0=g_i(\bar x_0)(i=1,2,....m) xi0=gi(xˉ0)(i=1,2,....m)
    • f i ( g 1 ( x ˉ ) , . . . , g m ( x ˉ ) , x ˉ ) = 0 ( i = 1 , 2 , . . . . m ) f_i(g_1(\bar x),...,g_m(\bar x),\bar x)=0(i=1,2,....m) fi(g1(xˉ),...,gm(xˉ),xˉ)=0(i=1,2,....m)

Given a function f : R n → R m \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m f:RnRm, where:
f ( x ) = ( f 1 ( x 1 , … , x n ) ⋮ f m ( x 1 , … , x n ) ) , \mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}, f(x)= f1(x1,,xn)fm(x1,,xn) , the Jacobian
matrix
J F J_{\mathbf{F}} JF is an m × n m \times n m×n matrix defined as: J F = ∂ F ∂ x = ( ∂ F 1 ∂ x 1 ⋯ ∂ F 1 ∂ x n ⋮ ⋱ ⋮ ∂ F m ∂ x 1 ⋯ ∂ F m ∂ x n ) . J_{\mathbf{F}} = \frac{\partial \mathbf{F}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix}. JF=xF= x1F1x1FmxnF1xnFm .

references

《最优化理论与算法》

你可能感兴趣的:(计算综合,人工智能)