机器学习——聚类算法

一、聚类的概念

根据样本之间的相似性,将样本划分到不同的类别中的一种无监督学习算法。

细节:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。计算样本和样本之间的相似性,一般使用欧式距离

二、聚类算法分类

根据聚类颗粒度分类:细粒度和粗粒度。

根据实现方法分类:

基于划分的聚类:K-means算法->按照质心(一个簇的中心位置,通过均值计算)分类;

基于层次的聚类:DIANA(自顶向下)AGNES(自底向上);

基于密度的聚类: DBSCAN算法

......

三、Kmeans算法流程/原理

K值的含义:表示聚类个数,参数n_clusters就是指定k值的。

API:sklearn.cluster.KMeans

流程:1.事先确定常数k,即最终聚类类别数;

           2.随机选择k个样本作为初始聚类中心;

           3.计算每个样本到k个中心的距离,选择最近的聚类中心点作为标记类别;

           4.根据每个类别中的样本点,重新计算出新的聚类中心点(平均值),如果计算得出的新中心点与原中心点一样则停止聚类,否则重新进行第三步过程,直到聚类中心不在变化或者达到最大迭代次数。

四、聚类评估方法

1.SSE“肘”方法

计算簇内误差的平方和,SSE越小,聚类效果越好

SSE=\sum_{i=1}^{k}\sum_{p\epsilon C_{i}}^{}\left | p-m_{i} \right |^{2}

2.SC轮廓系数

综合考虑簇内的内聚程度与簇间的分离程度,SC越大,聚类效果越好

S=\frac{\left ( b-a \right )}{max\left ( a,b \right )}

3.CH轮廓系数

综合考虑簇内的内聚程度、簇间的分离程度、质心的个数,CH越大,聚类效果越好

机器学习——聚类算法_第1张图片

你可能感兴趣的:(机器学习,算法,聚类)