- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- 互信息:理论框架、跨学科应用与前沿进展
大千AI助手
人工智能Python#OTHER人工智能深度学习算法互信息香农通信随机变量
1.起源与核心定义互信息(MutualInformation,MI)由克劳德·香农(ClaudeShannon)在1948年开创性论文《AMathematicalTheoryofCommunication》中首次提出,该论文奠定了现代信息论的基础。互信息用于量化两个随机变量之间的统计依赖关系,定义为:若已知一个随机变量的取值,能为另一个随机变量提供的信息量。数学上,对于离散随机变量XXX和YYY,
- 【项目实战】 容错机制与故障恢复:保障系统连续性的核心体系
本本本添哥
004-研效与DevOps运维工具链002-进阶开发能力分布式
在分布式系统中,硬件故障、网络波动、软件异常等问题难以避免。容错机制与故障恢复的核心目标是:通过主动检测故障、自动隔离风险、快速转移负载、重建数据一致性,最大限度减少故障对业务的影响,保障系统“持续可用”与“数据不丢失”。以下从核心机制、实现方式、典型案例等维度展开说明。一、故障检测:及时发现异常节点故障检测是容错的第一步,需通过多维度手段实时感知系统组件状态,确保故障被快速识别。1.健康检查与心
- 5G基站信号加速器!AD8021ARZ-REEL7亚德诺 超低噪声高速电压放大器 专利失真消除技术!
深圳市尚想信息技术有限公司
5G通信高速运放ADI黑科技8K视频医疗超声
AD8021ARZ-REEL7ADI:重新定义高速放大器的性能极限!一、产品简介AD8021ARZ-REEL7是ADI(亚德诺半导体)推出的超低噪声高速电压反馈放大器,采用XFCB工艺和专利失真消除技术,专为4K/8K视频处理、医疗成像、5G通信等超高频应用设计。以1.8GHz带宽和0.1nV/√Hz超低噪声,成为高速信号调理的终极解决方案!二、五大颠覆性优势军工级信号保真度1.8GHz-3dB带
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- 2024最新微信红包封面序列号大全+领取时间表(持续更新)
全网优惠分享
微信红包封面序列号兑换码,每天,我们都在奔波于现实的雾霾里。工作、生活、压力、困扰,如同无尽的泥潭,让我们时刻感到疲惫不堪。然而,在这个被喧嚣包围的世界,我们是否还能保持内心的宁静和平淡?微.信搜索:「封面院」关注公众号可领取红包封面序列号。最新微信红包封面序列号:先到先得,抢完为止:1、pdiqgLsY1lR2、vC8tY0VRf3D3、j0kzzrfwl6Y4、dqRCUZ0lwmJ5、ldT
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- D13-0729-阿凡提
阿凡提在冰川
D13D13-0729-阿凡提如何避开听力训练中的常见坑——Zoe分享听力训练中的常见坑听力训练中的常见坑看不懂,写不出:生词障碍,背景知识能看看懂,写不出:口音、语音现象(连读、弱读、爆破等)、语法一些语音现象失去爆破:两个爆破音连在一起,前面的失去爆破击穿:辅音、爆破音后面接h一般不发音,Youkown听力练习最大的坑听完不复习表现::听完不对材料进行复习,仅仅对一些错词进行更正,不做进一步拓
- 2021-08-03英语单词背诵Unit33
从入门到放弃_菠萝君
这里的单词只是我个人的一些联想记忆,如果大家有什么更好的记忆方式,可以在评论区分享出来,感谢。或者有什么觉得特别难记忆的单词和语法也可以分享出来,大家一起讨论记忆。Unit33dumb 拆分:du(毒)+mb(面包) 联想:毒面包吃下去就变哑了 释义:a.哑的,哑口无言的,愚蠢的dye 对比:eye眼睛dye染料,染色ruralechoreflectrepeat 拆分:rep(热评)+eat(吃)
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 从零到一:打造基于GigaChat AI的艺术创作平台 | 笙囧同学的全栈开发实战
作者简介:笙囧同学,中科院计算机大模型方向硕士,全栈开发爱好者联系方式:
[email protected]各大平台账号:笙囧同学座右铭:偷懒是人生进步的阶梯前言在AI技术飞速发展的今天,如何将前沿的大模型技术与实际应用相结合,一直是我们开发者关注的焦点。今天,笙囧同学将带大家从零开始,构建一个基于GigaChatAI的艺术创作平台,实现React前端+Django后端的完整全栈解决方案。这不仅仅是
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 提示工程架构师揭秘:AI让提示更“懂业务”的底层逻辑(超干货)
AI智能架构工坊
人工智能ai
好的,各位技术同仁,今天我们来聊一个非常前沿且极具实战价值的话题——提示工程架构师。这个新兴角色正迅速成为连接AI能力与业务价值的关键桥梁。特别是在如何让AI的“提示”更“懂业务”这一点上,其背后蕴含着深刻的底层逻辑和系统方法。本文将倾尽“超干货”,为你揭开这层神秘面纱,从理论到实践,全方位解读提示工程架构师的核心素养、方法论、工具链以及未来演进。标题:提示工程架构师揭秘:AI让提示更“懂业务”的
- window显示驱动开发—Direct3D 11 视频设备驱动程序接口 (DDI)
程序员王马
windows图形显示驱动开发音视频
这些设备驱动程序接口(DDI)是新的或针对Windows8更新的:CalcPrivateCryptoSessionSizeCalcPrivateAuthenticatedChannelSizeCalcPrivateVideoDecoderOutputViewSizeCalcPrivateVideoDecoderSizeCalcPrivateVideoProcessorEnumSizeCalcPri
- window显示驱动开发—支持 Direct3D 版本 10.1
1.Direct3D10.1的版本标识(1)版本号与头文件定义API版本号:D3D10_1_SDK_VERSION(在d3d10_1.h中定义)运行时检测:通过ID3D10Device::CheckFeatureSupport查询D3D10_FEATURE_LEVEL_10_1支持。D3D10_FEATURE_LEVELfeatureLevel=D3D10_FEATURE_LEVEL_10_1;i
- window 显示驱动开发-Direct3D 呈现性能改进(四)
程序员王马
windows图形显示驱动开发驱动开发
调用资源创建、映射和取消映射函数的行为更改对于WDDM1.3及更高版本驱动程序实现的这些函数,Direct3D运行时为映射默认方案提供一组受限的输入值。这些受限值仅适用于支持功能级别11.1及更高版本的驱动程序。CreateResource(D3D11)函数—这些输入D3D11DDIARG_CREATERESOURCE结构成员受到限制:调用资源创建、映射和取消映射函数的行为更改对于WDDM1.3及
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- 环境艺术设计必学的“3D建模与渲染软件”指南
在环境艺术设计领域,掌握高效的设计软件是学生入门阶段普遍关注的核心问题。优秀的软件如同设计师的得力助手,能够精准表达设计创意、显著提升工作效率,在设计流程的各个环节都发挥着不可或缺的作用。根据功能划分,环艺设计常用软件主要涵盖建模、渲染、后期处理及辅助工具四大类。本文将为您梳理环艺设计中必学的核心软件。一、核心建模软件建模是将设计构思转化为三维模型的关键步骤。以下两款软件在环艺设计中应用最为广泛:
- 云端渲染:重塑影视、游戏与设计行业的算力革命
导言:云端渲染技术通过将繁重的图形计算任务迁移至云端强大的计算集群,有效突破了传统渲染对高性能本地硬件和漫长等待周期的依赖,显著降低了制作成本与门槛。它正日益成为驱动影视、游戏及设计行业创新的核心技术。本文将深入解析云端渲染的技术原理,并探讨其如何深刻变革这三大行业的格局与未来。一、云端渲染的技术原理:解构算力革新云端渲染,其核心在于将高负载的图形处理任务——如复杂的3D建模、动画特效、光影计算及
- 2025年7月技术问答第1期
大势智慧
实景三维三维建模教程问答答疑干货
1.如图,用重建大师时重建好几次空间区域都是空的,周围的建模成功,该如何处理?答:确定下是中间两个缺失瓦块的名称,可以对瓦块右键清理中间结果,重新提交下生产。2.网格大师可以合并OSGB和3Dtiles的根结点吗,,不是想要的单独只有一个目录的那种,是不是只有最高级的那个文件夹里面的瓦片才是最终结果?答:根节点合并,只合并头文件,不会把瓦块整个合并。网格大师是一款能够解决实景三维模型空间参考、原点
- 我和父亲聊自卫反击战
石月石日
父亲在前线“爸,我看您这身上的皮肤又白又细的,一点也不像经历过战争的人。”“哈哈,那经历过战争的人都得带着枪伤?!”“嗯,不是说战场上枪林弹雨,子弹都是不长眼睛的吗?”“我当时在指挥连,不在最前沿,没有那么危险。”“哦!那您还真幸运,没受过伤。”“大伤没受,小伤还是免不了的。”“那什么样的算小伤?”“有一次我和副连长带着几个战士去执行任务,在下山的时候,我脚下一滑,一下子滚下了山坡,”“啊?中越边
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- 人工智能概念之九:深度学习概述
文章目录相关文章一、深度学习的定位:AI时代的基石技术1.1技术生态全景图1.2技术革命的催化剂二、深度学习的双面性:性能优势与技术挑战2.1技术优势全景扫描2.2技术挑战深度剖析三、技术演进时间轴:70年的厚积薄发四、主流框架生态对比五、未来演进方向相关文章人工智能概念之二:人工智能核心概念:网页链接一、深度学习的定位:AI时代的基石技术1.1技术生态全景图深度学习处于人工智能(AI)技术金字塔
- Python 网络科学(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/3df7c5feb0bf40d7b9d88197a04b0b37译者:飞龙协议:CCBY-NC-SA4.0第八章:自我中心网络分析前一章内容非常丰富,我们学习了如何可视化和分析整个网络。相比之下,本章应该会感觉更简单,内容也会少得多。在之前的章节中,我们学习了如何获取和创建网络数据,如何从网络数据构建图形,如何清理图形数据,以及如何做一些有趣的事情
- 不会PS也不会建模,却想把敦煌鸣沙山塞进小方块里!
自律的音律
掐指一算,好像很久没出特殊玩法的教程了~刚好前几天有小伙伴提问:有没有立体图表可以参考一下?由此延伸到以前发的一篇文章,里面整合了一些高质量的立体图表:我知道,PPT自带的图表你已经看腻了,是时候养养眼啦!那么问题来了,文章中的这种效果,要是只会PPT能不能做?经过@隔壁家老廖的提醒,通过关键词microworld找到了一些参考图:仔细想了想,似乎也没有很难,主要是用到了裸眼3D效果,结合切面光影
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比