使用Python实现分布式系统架构需要结合多种设计模式和工具,以下是一个分步骤的指南,涵盖核心组件和常用实践:
# 生成服务定义文件
python3 -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. service.proto
# 服务器端
import grpc
from . import service_pb2, service_pb2_grpc
class greeterpb2service(service_pb2_grpc.greeterpb2Servicer):
def SayHello(self, request, context):
return service_pb2.HelloResponse(message="Hello " + request.name)
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
service_pb2_grpc.add_greeterpb2Servicer_to_server(greeterpb2service(), server)
server.add_insecure_port('[::]:50051')
server.start()
server.wait_for_termination()
# tasks.py
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379/0')
@app.task
def long_running_task(value):
time.sleep(value)
return f"Task completed with value {value}"
# run with: celery -A tasks worker --loglevel=info
# 分片配置
sh = sharded_mongo ShardConfig(
primary="localhost:27017",
chunk_size=16 * 1024 * 1024 # 16MB
)
# 操作示例
db = sh.getDatabase('mydb')
collection = db.getCollection('mycollection')
# 自动分片查询
cursor = collection.find({"status": "active"}, sort=[("timestamp", -1)])
from redisson import RedissonClient
client = RedissonClient('redis://localhost:6379/0')
lock = client.lock("global_lock", timeout=30)
try:
lock.acquire()
# 加锁操作
lock.release()
except:
lock.release()
# HAProxy配置
global
log /dev/log local0
chdir /var/lib/haproxy
stats socket /var/run/haproxy.sock mode 660 level admin
stats user admin admin
defaults
log global
mode http
option forwardfor
option http-timeout 30s
balance roundrobin
frontend http-in
bind *:80
default_backend web-servers
backend web-servers
balance roundrobin
server server1 192.168.1.10:80 check
server server2 192.168.1.11:80 check
# Python客户端示例
from consul import client
consul = client.Client(host='consul-server', port=8500)
services = consul.catalog.services('web')
for service in services:
print(f"Service: {service['service']}, Nodes: {service['nodes']}")
# Python客户端
from prometheus_client import start_client, Summary
app = start_client()
app.add_summary('my metric', label_names=['env'])
@app.route('/metrics')
def metrics():
return app.metrics()
# Logstash配置片段
filter {
grok {
match => { "message" => "%{LOGstashDate:timestamp:YYYY-MM-DD HH:mm:ss} %{LOGstashLevel:level} %{LOGstashMessage:message}" }
}
date {
match => [ "timestamp", "YYYY-MM-DD HH:mm:ss" ]
}
mutate {
remove_field => [ "message" ]
}
}
# 限流示例(令牌桶算法)
import redis
from distributed锁 import RateLimiter
r = redis.Redis(host='localhost', port=6379)
limiter = RateLimiter(r, 'product_123', tokens_per_second=10)
if limiter.acquire(1):
# 允许访问
limiter.release(1)
else:
# 流量过载
pass
完整分布式系统开发需要持续监控(Prometheus + Grafana)、自动化运维(Ansible/Terraform)、混沌工程(Chaos Monkey)等配套措施。建议从中小规模开始验证,逐步扩展到全分布式架构。
文章来源:http://www.foodtestcn.com/zhishi/837.html