leetcode hot100 二叉树(一)

1.二叉树的中序遍历

        中序遍历(中根遍历):左-根-右顺序,递归实现。注意设置递归终止条件。

class Solution {
public:
    void search(TreeNode* root,vector& ans){
        if(!root) return ;
        search(root->left,ans);
        ans.push_back(root->val);
        search(root->right,ans);
    }
    vector inorderTraversal(TreeNode* root) {
        vector res;
        if(!root) return res;
        search(root,res);
        return res;
    }
};

2.二叉树的最大深度

        max(左子树深度,右子树深度)+1(根节点本身占一个深度)

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(!root) return 0;
        return max(maxDepth(root->left)+1,maxDepth(root->right)+1);
    }
};

3.翻转二叉树

  • 后序遍历:采用后序遍历(左右根)的方式,先处理子节点再处理父节点
  • 自底向上:从底层开始往上一点一点交换
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(!root) return nullptr;
        //从底层开始往上一点一点换
        TreeNode* left=invertTree(root->left);
        TreeNode* right=invertTree(root->right);
        root->left=right;
        root->right=left;
        return root;
    }
};

4.对称二叉树

  • 结构上的不对称直接剪枝处理:

         左子树还有但右子树没了/左子树没了但右子树还有-->结构上就不可能对称,可以直接剪枝。

  • 除了以上情况外,正常递归判断:

          要求r1->val==r2->val、judge(r1->right,r2->left)且judge(r1->left,r2->right)。

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        return judge(root->left,root->right);
    }
    bool judge(TreeNode *r1,TreeNode*r2){
        if(!r1&&!r2) return true;
        if(!r1||!r2) return false;
        return r1->val==r2->val&&judge(r1->right,r2->left)&&judge(r1->left,r2->right);
    }
};

5.二叉树的直径

思路:遍历到每个结点时,递归其左子树高度与右子树高度之和,并不断更新最大直径len。

注意:直径不一定经过根节点。

class Solution {
public:
    int diameterOfBinaryTree(TreeNode* root) {
        int len=0;
        calculate(root,len);
        return len;
    }
    int calculate(TreeNode* root,int& len){
        if(!root) return 0;
        int left_height=calculate(root->left,len);
        int right_height=calculate(root->right,len);
        len=max(len,left_height+right_height);  //在计算高度的同时,记录"左高度 + 右高度"的最大值。
        return max(left_height,right_height)+1;
    }
};

6.二叉树的层序遍历

  • 类似bfs算法,但引入sz变量记录每层结点数,每一层单独存放为一个vector
  • 处理每层结点的同时将该结点的左孩子和右孩子push_back进vector里
class Solution {
public:
    vector> levelOrder(TreeNode* root) {
        vector> res;
        if(!root) return res;
        queue q;
        q.push(root);
        while(q.size()){
            int sz=q.size();
            vector curr;
            for(int i=0;ival);
                if(t->left) q.push(t->left); 
                if(t->right) q.push(t->right);
            }
            res.push_back(curr);  //每遍历一层push_back一次数组
        }
        return res;
    }
};

 7.将有序数组转换为二叉搜索树

核心思想:利用二分查找的策略进行递归建树(有序数组和二叉搜索树都是二分查找时的常用结构,因此可以利用二分思想从中间结点开始递归创建左右子树)

class Solution {
public:
    TreeNode* buildTree(vector& nums,int l,int r){
        if(l>r) return nullptr;
        int mid=(l+r)>>1;
        TreeNode* root=new TreeNode(nums[mid]);
        root->left=buildTree(nums,l,mid-1);  //递归创建左子树
        root->right=buildTree(nums,mid+1,r);  //递归创建右子树
        return root;
    }
    TreeNode* sortedArrayToBST(vector& nums) {
        return buildTree(nums,0,nums.size()-1);
    }
};

你可能感兴趣的:(leetcode,算法,职场和发展)