今天我们来记录一下如何用pytorch构建线性回归模型以及其中相关的用法。首先还是先奉上完整代码:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Hyper-parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
# Linear regression model
model = nn.Linear(input_size, output_size)
# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# Train the model
for epoch in range(num_epochs):
# Convert numpy arrays to torch tensors
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# Plot the graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
这段代码是一个简单的线性回归模型,使用PyTorch框架实现。下面是代码的主要组成部分及其功能解释:
torch
:PyTorch库,用于构建和训练神经网络。torch.nn
:PyTorch中的神经网络模块。numpy
:用于处理数组的库。matplotlib.pyplot
:用于绘图的库。import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
input_size
:输入层的大小,这里是1。output_size
:输出层的大小,这里是1。num_epochs
:训练的轮数。learning_rate
:学习率。# Hyper-parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
x_train
和y_train
是训练数据的特征和目标值。# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
nn.Linear
创建一个线性层,它接受输入大小和输出大小。# Linear regression model
model = nn.Linear(input_size, output_size)
criterion
:使用均方误差损失函数MSELoss
。optimizer
:使用随机梯度下降SGD
作为优化器。# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
num_epochs
次,每次执行以下操作:
# Train the model
for epoch in range(num_epochs):
# Convert numpy arrays to torch tensors
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
matplotlib
绘制原始数据点和拟合的直线。# Plot the graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
torch.save
保存模型的状态字典。# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
torch.from_numpy(ndarray)
torch.from_numpy(ndarray)
ndarray
—— 要转换的NumPy数组。inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
nn.Linear(in_features, out_features)
nn.Linear(in_features, out_features)
in_features
—— 输入特征的数量。out_features
—— 输出特征的数量。model = nn.Linear(input_size, output_size)
nn.MSELoss()
nn.MSELoss()
criterion = nn.MSELoss()
torch.optim.SGD(params, lr=0, ...)
torch.optim.SGD(params, lr=learning_rate, ...)
params
—— 模型参数的迭代器。lr
—— 学习率,控制更新步长的大小。optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
model(inputs)
model(inputs)
inputs
—— 输入数据,通常是PyTorch张量。outputs = model(inputs)
criterion(outputs, targets)
criterion(outputs, targets)
outputs
—— 模型的预测输出。targets
—— 实际的目标值。loss = criterion(outputs, targets)
optimizer.zero_grad()
optimizer.zero_grad()
optimizer.zero_grad()
loss.backward()
loss.backward()
loss.backward()
optimizer.step()
optimizer.step()
optimizer.step()
.detach().numpy()
.detach().numpy()
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x, y, ...)
plt.plot(x, y, ...)
x
—— x轴数据。y
—— y轴数据。plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.legend()
plt.legend()
plt.show()
plt.show()
plt.show()
torch.save(obj, f)
torch.save(obj, f)
obj
—— 要保存的对象。f
—— 文件路径或文件对象。torch.save(model.state_dict(), 'model.ckpt')
收工,Ending