Day 34

 GPU训练
要让模型在 GPU 上训练,主要是将模型和数据迁移到 GPU 设备上。

在 PyTorch 里,.to(device) 方法的作用是把张量或者模型转移到指定的计算设备(像 CPU 或者 GPU)上。

对于张量(Tensor):调用 .to(device) 之后,会返回一个在新设备上的新张量。
对于模型(nn.Module):调用 .to(device) 会直接对模型进行修改,让其所有参数和缓冲区都移到新设备上。在进行计算时,所有输入张量和模型必须处于同一个设备。要是它们不在同一设备上,就会引发运行时错误。并非所有 PyTorch 对象都有 .to(device) 方法,只有继承自 torch.nn.Module 的模型以及 torch.Tensor 对象才有此方法。
RuntimeError: Tensor for argument #1 'input' is on CPU, but expected it to be on GPU 这个常见错误就是输入张量和模型处于不同的设备。

import torch

if torch.cuda.is_available():
    print("CUDA可用!")
    device_count = torch.cuda.device_count()
    print(f"可用的CUDA设备数量: {device_count}")
    current_device = torch.cuda.current_device()
    print(f"当前使用的CUDA设备索引: {current_device}")
    device_name = torch.cuda.get_device_name(current_device)
    print(f"当前CUDA设备的名称: {device_name}")
    cuda_version = torch.version.cuda
    print(f"CUDA版本: {cuda_version}")
    print("cuDNN版本:", torch.backends.cudnn.version())

else:
    print("CUDA不可用。")

iris = load_iris()
X = iris.data 
y = iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(4, 10)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

model = MLP().to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000
losses = []
start_time = time.time()

for epoch in range(num_epochs):

    outputs = model(X_train)
    loss = criterion(outputs, y_train)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    losses.append(loss.item())

    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')

plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

能够优化的只有数据传输时间,针对性解决即可,很容易想到2个思路:
1. 直接不打印训练过程的loss了,但是这样会没办法记录最后的可视化图片,只能肉眼观察loss数值变化。
2. 每隔200个epoch保存一下loss,不需要20000个epoch每次都打印,

下面先尝试第一个思路:

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

iris = load_iris()
X = iris.data 
y = iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)

class MLP(nn.Module): 
    def __init__(self): 
        super(MLP, self).__init__() 
        self.fc1 = nn.Linear(4, 10)  
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

model = MLP()

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000 

losses = []

import time
start_time = time.time() 

for epoch in range(num_epochs): 
    outputs = model.forward(X_train)  
    # outputs = model(X_train) 
    loss = criterion(outputs, y_train) 

    optimizer.zero_grad() 
    loss.backward(
    optimizer.step() 

    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')

优化后发现确实效果好,近乎和用cpu训练的时长差不多。所以可以理解为数据从gpu到cpu的传输占用了大量时间。

下面尝试下第二个思路:

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

iris = load_iris()
X = iris.data 、
y = iris.target 、

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(4, 10)  
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3) 

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

model = MLP().to(device)

criterion = nn.CrossEntropyLoss()、
optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000 、

losses = []

start_time = time.time() 、

for epoch in range(num_epochs):

    outputs = model(X_train)  、
    loss = criterion(outputs, y_train)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 200 == 0:
        losses.append(loss.item()) # item()方法返回一个Python数值,loss是一个标量张量
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time  、
print(f'Training time: {time_all:.2f} seconds')

plt.plot(range(len(losses)), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

你可能感兴趣的:(每日打卡,python)