【CPCI+知网+EI+Scopus检索】2025年6月CV、数字媒体、机器人、自动化、先进制造、金融、贸易领域国际会议来袭!
投稿倒计时!五大国际学术会议五城联动,硕博生速来抢占学术高地!南京的六朝古韵,上海的摩登浪潮,深圳的创新活力,重庆的山城烟火——学术盛宴等你闪耀!
import numpy as np
import matplotlib.pyplot as plt
# 16-QAM调制与解调实现
def qam_modulate(bits, M=16):
k = int(np.log2(M))
symbols = bits.reshape(-1, k)
constellation = np.array([(x, y) for x in [-3, -1, 1, 3] for y in [-3, -1, 1, 3]])
indices = [int(''.join(map(str, sym)), 2) for sym in symbols]
return constellation[indices]
def qam_demodulate(signal, M=16):
constellation = np.array([(x, y) for x in [-3, -1, 1, 3] for y in [-3, -1, 1, 3]])
distances = np.linalg.norm(signal[:, np.newaxis] - constellation, axis=2)
indices = np.argmin(distances, axis=1)
return np.unpackbits(np.array(indices, dtype=np.uint8).reshape(-1, 4)[:, -4:]
# 生成随机比特流测试
bits = np.random.randint(0, 2, 64)
mod_signal = qam_modulate(bits)
demod_bits = qam_demodulate(mod_signal)
print("误码率:", np.mean(bits != demod_bits.flatten()))
import numpy as np
class AntColony:
def __init__(self, jobs, machines, pheromone=1.0, alpha=1, beta=2):
self.pheromone = np.full((jobs, machines), pheromone)
self.alpha, self.beta = alpha, beta
def schedule(self, iterations=100):
best_seq = []
for _ in range(iterations):
seq = self._construct_solution()
if not best_seq or self._makespan(seq) < self._makespan(best_seq):
best_seq = seq
self._update_pheromone(seq)
return best_seq
def _construct_solution(self):
# 基于信息素选择路径(简化工序选择逻辑)
return np.argsort(np.random.rand(len(self.pheromone), len(self.pheromone[0])))
def _update_pheromone(self, seq):
self.pheromone += 1 / self._makespan(seq)
def _makespan(self, seq):
# 计算最大完工时间(简化工时模型)
return np.max(np.cumsum(seq, axis=1))
# 示例:3个工件在2台机器上的调度
aco = AntColony(jobs=3, machines=2)
print("最优调度序列:", aco.schedule())
from sklearn.tree import DecisionTreeClassifier
import numpy as np
# 生成信用评分数据(特征:收入、负债;标签:违约)
X = np.array([[50000, 20000], [30000, 50000], [80000, 10000], [20000, 60000]])
y = np.array([0, 1, 0, 1])
# 构建决策树模型
clf = DecisionTreeClassifier(criterion='gini', max_depth=3)
clf.fit(X, y)
# 预测新样本
print("违约风险:", clf.predict([[45000, 30000]])) # 输出[0]
import cv2
import matplotlib.pyplot as plt
# Canny边缘检测全流程实现
def canny_edge_detection(img, low_threshold=50, high_threshold=150):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
edges = cv2.Canny(blur, low_threshold, high_threshold)
return edges
# 测试图像处理
image = cv2.imread('robot_vision.jpg')
result = canny_edge_detection(image)
plt.imshow(result, cmap='gray')
plt.title('Canny Edge Detection')
plt.show()
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
# 生成模拟股价数据
dates = pd.date_range(start='2025-01-01', periods=100)
prices = 50 + np.cumsum(np.random.normal(0, 1, 100))
series = pd.Series(prices, index=dates)
# 构建ARIMA(1,1,1)模型
model = ARIMA(series, order=(1,1,1))
results = model.fit()
# 预测未来5日股价
forecast = results.forecast(steps=5)
print("股价预测:", forecast)
众城联动,学术盛宴等你来!古都金陵的智慧、魔都上海的活力、创新深圳的速度、山城重庆的烟火——投稿通道已开启,硕博生们速速行动,与全球学者共绘科研蓝图!