class BaseChatMemory(BaseMemory, ABC):
chat_memory: BaseChatMessageHistory = Field(
default_factory=InMemoryChatMessageHistory
)
output_key: Optional[str] = None
input_key: Optional[str] = None
return_messages: bool = False
def _get_input_output(
self, inputs: Dict[str, Any], outputs: Dict[str, str]
) -> Tuple[str, str]:
"""从输入和输出字典中提取对应的字符串(人类提问、AI输出)"""
if self.input_key is None:
# 如果没有传递input_key则从inputs中提取人类提问的key
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables)
else:
prompt_input_key = self.input_key
if self.output_key is None:
if len(outputs) == 1:
output_key = list(outputs.keys())[0]
elif "output" in outputs:
output_key = "output"
warnings.warn(
f"'{self.__class__.__name__}' got multiple output keys:"
f" {outputs.keys()}. The default 'output' key is being used."
f" If this is not desired, please manually set 'output_key'."
)
else:
raise ValueError(
f"Got multiple output keys: {outputs.keys()}, cannot "
f"determine which to store in memory. Please set the "
f"'output_key' explicitly."
)
else:
output_key = self.output_key
return inputs[prompt_input_key], outputs[output_key]
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""保存对话上下文到记忆缓冲区"""
# 从输入和输出中获取输入字符串、输出字符串
input_str, output_str = self._get_input_output(inputs, outputs)
# 存储对应的对话信息
self.chat_memory.add_messages(
[HumanMessage(content=input_str), AIMessage(content=output_str)]
)
async def asave_context(
self, inputs: Dict[str, Any], outputs: Dict[str, str]
) -> None:
"""异步保存对话上下文到记忆缓冲区"""
input_str, output_str = self._get_input_output(inputs, outputs)
await self.chat_memory.aadd_messages(
[HumanMessage(content=input_str), AIMessage(content=output_str)]
)
def clear(self) -> None:
"""清除记忆中的对话历史"""
self.chat_memory.clear()
async def aclear(self) -> None:
"""异步清除记忆中的对话历史"""
await self.chat_memory.aclear()