- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 5G 承载网中的数学函数
机理分析法,从流量控制、稳定性保障、资源优化和跨层协同四个维度,系统解析5G承载网络中数学函数的作用机制,揭示其如何通过数学建模实现网络性能的动态平衡与优化。一、流量控制函数:网络流建模与路径优化1.组网拓扑与流量函数5G承载网的组网模式(环形、环带链、双归)直接影响流量分布,其数学表征如下:环形组网流量函数:Bi(t)=NB⋅η(t)+ΔBstat(t)B:环网总带宽;N:节点数;η(t)
- 基于智能合约的AI算力交易:以太坊应用开发全流程
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构智能合约人工智能ai
基于智能合约的AI算力交易:以太坊应用开发全流程关键词:智能合约、AI算力交易、以太坊、应用开发、全流程摘要:本文围绕基于智能合约的AI算力交易在以太坊上的应用开发全流程展开。首先介绍相关背景知识,接着深入解释核心概念及它们之间的关系,阐述核心算法原理和操作步骤,给出数学模型和公式,通过项目实战展示代码实际案例及详细解释,探讨实际应用场景,推荐相关工具和资源,分析未来发展趋势与挑战。最后总结主要内
- Android操作系统的UI适配方案研究
操作系统内核探秘
操作系统内核揭秘androiduiai
Android操作系统的UI适配方案研究关键词:AndroidUI适配、屏幕密度、分辨率适配、约束布局、多屏幕支持、响应式设计、dp/sp单位摘要:本文深入探讨Android操作系统中的UI适配问题及其解决方案。文章从基础概念入手,分析Android碎片化带来的适配挑战,详细介绍多种适配方案的技术原理和实现方法,包括尺寸单位、布局技术、资源限定符等。通过实际代码示例和数学模型,展示如何构建适应不同
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- AI人工智能深度学习的模型评估与选择
AI大模型应用之禅
人工智能深度学习ai
AI人工智能深度学习的模型评估与选择关键词:AI、人工智能、深度学习、模型评估、模型选择摘要:本文聚焦于AI人工智能深度学习中的模型评估与选择。在深度学习迅猛发展的当下,构建一个有效的模型并非易事,而准确评估和恰当选择模型对于模型性能的发挥和应用效果至关重要。文章将详细介绍模型评估与选择的相关背景知识,深入剖析核心概念与联系,阐述核心算法原理及具体操作步骤,运用数学模型和公式进行详细讲解并举例说明
- 【Python】Pillow 2
宅男很神经
python开发语言
3.2.1色彩空间(ColorSpace)与色彩模型(ColorModel)基础色彩模型(ColorModel):色彩模型是一种抽象的数学模型,用一组数值(通常是三个或四个分量)来描述颜色。常见的色彩模型有:RGB(Red,Green,Blue):加色模型,常用于显示器、扫描仪、数码相机。通过混合不同强度的红、绿、蓝三原色光来产生各种颜色。CMY(Cyan,Magenta,Yellow):减色模型
- 【2024国赛C题】2024 年全国大学生数学建模比赛思路、代码更新中.....
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛C题及资源下载4思路、代码分享......⛳️竞赛事件及参赛一、解题思路理解题目背景和要求:仔细阅读题目,理解问题的背景、目的和具体要求。识别问题的关键要素
- 多目标优化:改进蚁群算法解决实际工程问题
AI智能探索者
算法服务器linuxai
多目标优化:改进蚁群算法解决实际工程问题关键词:多目标优化、改进蚁群算法、实际工程问题、算法原理、项目实战摘要:本文聚焦于多目标优化领域,介绍了如何运用改进蚁群算法来解决实际工程问题。首先阐述了多目标优化和蚁群算法的相关概念,接着深入分析改进蚁群算法的原理和具体操作步骤,包括数学模型和公式。通过项目实战展示了该算法在实际中的应用,探讨了其实际应用场景、工具和资源推荐,以及未来发展趋势与挑战。最后进
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 暗流涌动
创作人李新钢
深度学习和所有机器学习方法一样,是一种用数学模型对真实世界中的特定问题进行建模,以解决该领域内相似问题的过程。要教计算机认字,差不多也是同样的道理。计算机也要先把每一个字的图案反复看很多很多遍,然后,在计算机的大脑(处理器加上存储器)里,总结出一个规律来,以后计算机再看到类似的图案,只要符合之前总结的规律,计算机就能知道这图案到底是什么字。学习的、反复看的图片叫“训练数据集”;“训练数据集”中,一
- 【2024国赛D题】2024 年全国大学生数学建模比赛思路、代码更新中.....
长安程序猿
matlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛D题及资源下载4思路、代码分享......⛳️竞赛事件及参赛竞赛开始时间:北京时间2024年9月5日18:00竞赛结束时间:北京时间2024年9月8日20:
- 机器学习入门:线性回归详解与实战
线性回归(LinearRegression)是机器学习中最基础也最常用的算法之一,无论是初学者入门还是实际业务场景,都能看到它的身影。本文将从概念、原理到代码实现,带你全方位了解线性回归。一、什么是线性回归?简单来说,线性回归是一种用于预测自变量与因变量之间线性关系的算法。它假设因变量(需要预测的结果)与一个或多个自变量(影响因素)之间存在线性关联,通过构建数学模型来描述这种关系,从而实现对未知数
- Python趣味算法:冒泡排序——从理论到极致优化
坐路边等朋友
Python算法程序人生开发语言python人工智能学习方法经验分享
排序算法是程序员的必修课,而冒泡排序是理解算法思维的绝佳起点。本文将深入解析冒泡排序的7种优化技巧,通过可视化演示+多维度性能分析,带你彻底掌握这一经典算法!看在每天坚持分享有趣知识的份上,点个关注吧(づ ̄3 ̄)づ关注是我更新的动力 ̄︶ ̄∗ ̄︶ ̄∗)作者会分享更多涉及到各种编程语言的有趣知识!(^∀^●)ノシ目录一、算法核心:气泡上浮的物理模拟1.1动态可视化算法流程1.2时间复杂度数学模型二、基
- 目标检测:AI人工智能推动金融科技发展
AI应用开发实战派
人工智能目标检测金融ai
目标检测:AI人工智能推动金融科技发展关键词:目标检测、金融科技、人工智能、计算机视觉、深度学习、YOLO、金融风控摘要:本文深入探讨了目标检测技术在金融科技领域的创新应用。我们将从计算机视觉基础原理出发,详细分析目标检测的核心算法和数学模型,并通过实际金融场景案例展示其应用价值。文章不仅包含技术实现细节,还提供了完整的开发环境搭建指南和代码示例,最后展望了该技术在金融科技领域的未来发展趋势和挑战
- 数据湖vs数据仓库:非结构化数据存储的终极对决
AI大数据智能洞察
大数据与AI人工智能数据仓库ai
数据湖vs数据仓库:非结构化数据存储的终极对决关键词:数据湖,数据仓库,非结构化数据,数据存储,Schema-on-Read,Schema-on-Write,数据治理摘要:本文深入对比数据湖与数据仓库在非结构化数据存储领域的核心差异,从技术架构、数据处理范式、应用场景等维度展开分析。通过数学模型、代码实战和典型案例,揭示两者在非结构化数据管理中的优势与局限,为企业数据架构选型提供决策参考。1.背景
- Hive数据加密:大数据安全存储方案
AI大数据智能洞察
hivehadoop数据仓库ai
Hive数据加密:大数据安全存储方案关键词:Hive数据加密、大数据安全、存储方案、加密算法、密钥管理摘要:本文深入探讨了Hive数据加密这一重要的大数据安全存储方案。首先介绍了Hive数据加密的背景,包括目的、适用读者、文档结构和相关术语。接着阐述了核心概念,如加密的原理和架构,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理和具体操作步骤,结合Python代码示例。引入了相关的数学模型
- 量化投资革命:卫星图像数据如何提升价值投资准确率
AI量化价值投资入门到精通
ai
量化投资革命:卫星图像数据如何提升价值投资准确率关键词:量化投资、卫星图像数据、价值投资、准确率提升、数据挖掘摘要:本文聚焦于量化投资领域,深入探讨卫星图像数据在提升价值投资准确率方面的关键作用。首先介绍量化投资与价值投资的背景,引出卫星图像数据的引入。接着详细阐述卫星图像数据的核心概念、与投资的联系以及数据处理的核心算法原理。通过数学模型和公式分析其如何助力投资决策。结合实际项目案例展示卫星图像
- 软件工程领域产品运营的开发流程管理
软件工程领域产品运营的开发流程管理关键词:软件工程、产品运营、开发流程、敏捷开发、DevOps、持续集成、项目管理摘要:本文深入探讨了软件工程领域中产品运营的开发流程管理。从传统的瀑布模型到现代的敏捷开发和DevOps实践,我们将全面分析各种开发流程的优缺点、适用场景以及实施方法。文章包含详细的流程图示、代码示例、数学模型以及实际案例分析,旨在为软件工程师、产品经理和技术管理者提供一套完整的开发流
- 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)
空脑小白
数学建模数学建模
问题一:数据预处理与基础统计分析(以stroke.csv为例)一、建模目标对stroke.csv数据进行预处理、特征统计和可视化分析;找出影响中风的关键因素,为后续建模提供数据依据。二、建模过程(1)数据理解stroke.csv包含如下字段(常见字段如下,实际以文件为准):gender:性别age:年龄hypertension:是否患高血压(0:否,1:是)heart_disease:是否患心脏病
- 量化金融简介(附电子书资料)
hweiyu00
技术栈杂谈量化金融
概述量化金融(QuantitativeFinance)是一门融合数学、统计学、计算机科学与金融学的交叉学科,核心是通过量化模型和数据分析解决金融领域的问题,例如资产定价、风险管理、投资策略开发等。它的兴起与金融市场的复杂化、数据可获得性提升以及计算机算力发展密切相关。电子书资料:https://pan.quark.cn/s/cb1e6b72fbec一、量化金融的核心目标降低不确定性:通过数学模型分
- HTTP与网络通信:促进网络的绿色发展
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构网络http网络协议ai
HTTP与网络通信:促进网络的绿色发展关键词:HTTP、网络通信、绿色发展、能源效率、数据传输优化摘要:本文深入探讨了HTTP与网络通信在促进网络绿色发展方面的重要作用。首先介绍了HTTP和网络通信的背景知识,包括其目的、预期读者和文档结构等。接着阐述了HTTP和网络通信的核心概念及联系,详细讲解了相关算法原理和具体操作步骤,并给出了数学模型和公式进行深入分析。通过项目实战展示了如何在实际中运用相
- AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶人工智能ai
AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用关键词:多智能体系统、智能渔业、养殖管理、人工智能、分布式决策、环境监测、自主控制摘要:本文深入探讨了多智能体系统(MAS)在智能渔业养殖管理中的应用。我们将从基础概念出发,分析多智能体系统的架构原理,详细介绍其在渔业环境监测、投喂优化、疾病预警等方面的具体实现方法。文章包含数学模型、算法实现和实际案例,为读者提供从理论到实践的完整知识体系,
- 2025超详细的数学建模入门速成指南
2025数学建模入门速成指南(自用版)作为曾获国赛和华为杯双国一的选手,我认为数学建模入门关键在于掌握基础模型(优化、预测、评价)、数据处理思维(清洗、分析、可视化)以及有效的团队协作模式。这篇笔记结合我的自身经历,分享从【零基础到竞赛获奖】的准备思路。01整体规划1.数模入门数学建模竞赛考察我们解决实际问题的综合能力。在备赛初期首先建立以下认知基础:(1)竞赛特点:命题趋势:近年赛题倾向于跨学科
- 微服务架构监控:四大黄金指标解析
AI云原生与云计算技术学院
架构微服务云原生ai
微服务架构监控:四大黄金指标解析关键词:微服务架构、监控体系、四大黄金指标、SRE、延迟、流量、错误、饱和度摘要:本文深入解析微服务架构监控的核心方法论——四大黄金指标(延迟、流量、错误、饱和度),基于GoogleSRE最佳实践,结合具体技术实现与数学模型,阐述指标设计原理、数据采集方法、可视化实践及异常诊断逻辑。通过完整的项目实战案例,演示如何构建端到端监控体系,帮助技术团队建立可观测性基线,提
- 时序数据库在数据库领域的行业应用
数据库管理艺术
数据库时序数据库ai
时序数据库在数据库领域的行业应用关键词:时序数据库、数据库领域、行业应用、时间序列数据、实时分析摘要:本文深入探讨了时序数据库在数据库领域的行业应用。首先介绍了时序数据库的背景知识,包括其目的、适用读者、文档结构和相关术语。接着阐述了时序数据库的核心概念、架构和工作原理,通过Python代码详细讲解了核心算法。还介绍了相关的数学模型和公式,并举例说明。在项目实战部分,给出了开发环境搭建、源代码实现
- AtCoder Beginner Contest 414(ABCD)
前言被数学建模分散精力后明显感觉状态不如月初了,这俩赛道看来只能选一个走。TT一、A-StreamerTakahashi#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(){intn,l,r;cin>>n>>l>>r;intcnt=0;for(inti=0,x,y;i>x>>y;if(x=r){cnt++;}}
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比