使用KITTI跑LIOSAM并完成EVO评价

一、kitti转ROS bag

1.1下载kitti数据集

其中kitti中的十个序列对应的raw data关系如下:

00: 2011_10_03_drive_0027
01: 2011_10_03_drive_0042
02: 2011_10_03_drive_0034
03: 2011_09_26_drive_0067
04: 2011_09_30_drive_0016
05: 2011_09_30_drive_0018
06: 2011_09_30_drive_0020
07: 2011_09_30_drive_0027
08: 2011_09_30_drive_0028
09: 2011_09_30_drive_0033
10: 2011_09_30_drive_0034

也就是意味着需要下载这几个数据集对应的,其中下载链接整理如下:
1)官网下载:KITTI,需要进行注册,比较麻烦。
2)百度云下载kitti数据集下载中的KITTI data_odometry_velodyne下载地址:百度云 密码:tc10,及大佬分享的文件
KITTI RAW 百度云盘,提取码:tsdp

找到数据集链接,接下来就是选择下载怎样的数据集:
1)任乾大佬的框架从零开始做自动驾驶定位(二): 数据集,下载*_sync.zip相关的数据集即可。
2)如果是LIO-SAM相关的算法,需要下载_extract.zip和_sync.zip两个部分**,这是因为*_extract.zip 包含的IMU数据是100Hz, 但是视觉的数据没有去畸变,此外激光数据是以txt格式存储的,在转换为bag格式的时候非常耗时.虽然*_sync.zip数据中的IMU是10Hz, 但是视觉数据已经去畸变了,并且视觉和激光的时间戳已经同步好了,激光数据的存储格式是二进制格式bin存储的。

1.2kitti数据转ros bag

1)*_extract.zip转化方式

使用官方的kitti2bag进行转换,具体操作方式如下:

A. 升级numpy

这一步很重要,不然后面运行会报错。kitti2bag要求numpy版本>=1.12,ubuntu 16.04默认的是1.11,升级可以通过一条指令来完成。

sudo pip install -U numpy

B. 安装kitti2bag

sudo pip install kitti2bag

C.按照以下方式进行存储

使用KITTI跑LIOSAM并完成EVO评价_第1张图片

D.运行

kitti2bag -t 2011_09_30 -r 0016 raw_synced

2)_extract.zip和_sync.zip

该种方式需要下载*_extract.zip对应的*_sync.zip,步骤与上述类似。

A.安装tpdm

pip3 install tqdm

B.下载kitti2bag.py

该文件是LIO-SAM作者提供的文件。

#!env python
# -*- coding: utf-8 -*-

import sys

try:
    import pykitti
except ImportError as e:
    print('Could not load module \'pykitti\'. Please run `pip install pykitti`')
    sys.exit(1)

import tf
import os
import cv2
import rospy
import rosbag
from tqdm import tqdm
from tf2_msgs.msg import TFMessage
from datetime import datetime
from std_msgs.msg import Header
from sensor_msgs.msg import CameraInfo, Imu, PointField, NavSatFix
import sensor_msgs.point_cloud2 as pcl2
from geometry_msgs.msg import TransformStamped, TwistStamped, Transform
from cv_bridge import CvBridge
import numpy as np
import argparse

def save_imu_data(bag, kitti, imu_frame_id, topic):
    print("Exporting IMU")
    for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
        q = tf.transformations.quaternion_from_euler(oxts.packet.roll, oxts.packet.pitch, oxts.packet.yaw)
        imu = Imu()
        imu.header.frame_id = imu_frame_id
        imu.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
        imu.orientation.x = q[0]
        imu.orientation.y = q[1]
        imu.orientation.z = q[2]
        imu.orientation.w = q[3]
        imu.linear_acceleration.x = oxts.packet.af
        imu.linear_acceleration.y = oxts.packet.al
        imu.linear_acceleration.z = oxts.packet.au
        imu.angular_velocity.x = oxts.packet.wf
        imu.angular_velocity.y = oxts.packet.wl
        imu.angular_velocity.z = oxts.packet.wu
        bag.write(topic, imu, t=imu.header.stamp)

def save_imu_data_raw(bag, kitti, imu_frame_id, topic):
    print("Exporting IMU Raw")
    synced_path = kitti.data_path
    unsynced_path = synced_path.replace('sync', 'extract')
    imu_path = os.path.join(unsynced_path, 'oxts')

    # read time stamp (convert to ros seconds format)
    with open(os.path.join(imu_path, 'timestamps.txt')) as f:
        lines = f.readlines()
        imu_datetimes = []
        for line in lines:
            if len(line) == 1:
                continue
            timestamp = datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f')
            imu_datetimes.append(float(timestamp.strftime("%s.%f")))

    # fix imu time using a linear model (may not be ideal, ^_^)
    imu_index = np.asarray(range(len(imu_datetimes)), dtype=np.float64)
    z = np.polyfit(imu_index, imu_datetimes, 1)
    imu_datetimes_new = z[0] * imu_index + z[1]
    imu_datetimes = imu_datetimes_new.tolist()

    # get all imu data
    imu_data_dir = os.path.join(imu_path, 'data')
    imu_filenames = sorted(os.listdir(imu_data_dir))
    imu_data = [None] * len(imu_filenames)
    for i, imu_file in enumerate(imu_filenames):
        imu_data_file = open(os.path.join(imu_data_dir, imu_file), "r")
        for line in imu_data_file:
            if len(line) == 1:
                continue
            stripped_line = line.strip()
            line_list = stripped_line.split()
            imu_data[i] = line_list

    assert len(imu_datetimes) == len(imu_data)
    
    for timestamp, data in zip(imu_datetimes, imu_data):
        roll, pitch, yaw = float(data[3]), float(data[4]), float(data[5]), 
        q = tf.transformations.quaternion_from_euler(roll, pitch, yaw)
        imu = Imu()
        imu.header.frame_id = imu_frame_id
        imu.header.stamp = rospy.Time.from_sec(timestamp)
        imu.orientation.x = q[0]
        imu.orientation.y = q[1]
        imu.orientation.z = q[2]
        imu.orientation.w = q[3]
        imu.linear_acceleration.x = float(data[11])
        imu.linear_acceleration.y = float(data[12])
        imu.linear_acceleration.z = float(data[13])
        imu.angular_velocity.x = float(data[17])
        imu.angular_velocity.y = float(data[18])
        imu.angular_velocity.z = float(data[19])
        bag.write(topic, imu, t=imu.header.stamp)

        imu.header.frame_id = 'imu_enu_link'
        bag.write('/imu_correct', imu, t=imu.header.stamp) # for LIO-SAM GPS

def save_dynamic_tf(bag, kitti, kitti_type, initial_time):
    print("Exporting time dependent transformations")
    if kitti_type.find("raw") != -1:
        for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
            tf_oxts_msg = TFMessage()
            tf_oxts_transform = TransformStamped()
            tf_oxts_transform.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
            tf_oxts_transform.header.frame_id = 'world'
            tf_oxts_transform.child_frame_id = 'base_link'

            transform = (oxts.T_w_imu)
            t = transform[0:3, 3]
            q = tf.transformations.quaternion_from_matrix(transform)
            oxts_tf = Transform()

            oxts_tf.translation.x = t[0]
            oxts_tf.translation.y = t[1]
            oxts_tf.translation.z = t[2]

            oxts_tf.rotation.x = q[0

你可能感兴趣的:(SLAM,ubuntu,slam,c++)