目录
引言
理论基础
️ 使用场景与代码示例
场景一:批量重命名文件
场景二:自动下载网页内容
场景三:数据清洗
场景四:定时执行任务
场景五:自动化邮件发送
场景六:自动化测试
场景七:数据库操作
场景八:日志分析
场景九:文件压缩
场景十:自动化文档生成
结语
在程序员的世界里,自动化是提升效率的金钥匙。Python,以其易读性和强大的库支持,成为了实现自动化任务的首选语言。本文精选了10个实用的Python自动化脚本,涵盖文件处理、网络请求、数据分析等多个领域,旨在帮你节省时间,减少重复劳动,提升工作效能。
Python的自动化脚本主要依赖于标准库和第三方库,如os、requests、pandas等。通过这些库,我们可以轻松实现文件操作、数据抓取、数据分析等功能。
在处理大量媒体文件时,统一命名规则非常必要。
代码示例
import os
def batch_rename(directory, prefix):
i = 1
for filename in os.listdir(directory):
ext = os.path.splitext(filename)[1]
new_name = f"{prefix}_{i}{ext}"
os.rename(os.path.join(directory, filename), os.path.join(directory, new_name))
i += 1
batch_rename('/path/to/directory', 'file')
对于研究者或数据分析师来说,自动抓取网络数据至关重要。
代码示例
import requests
def download_webpage(url, output_file):
response = requests.get(url)
with open(output_file, 'w') as file:
file.write(response.text)
download_webpage('http://example.com', 'webpage.html')