【LeetCode Hot100 | 每日刷题】最大子数组和



53. 最大子数组和 - 力扣(LeetCode)

题目:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

 方法:动态规划

思路和算法

假设 nums 数组的长度是 n,下标从 0 到 n−1。

我们用 f(i) 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:

max 0≤i≤n−1 {f(i)}

因此我们只需要求出每个位置的 f(i),然后返回 f 数组中的最大值即可。那么我们如何求 f(i) 呢?我们可以考虑 nums[i] 单独成为一段还是加入 f(i−1) 对应的那一段,这取决于 nums[i] 和 f(i−1)+nums[i] 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:

f(i)=max{f(i−1)+nums[i],nums[i]}

不难给出一个时间复杂度 O(n)、空间复杂度 O(n) 的实现,即用一个 f 数组来保存 f(i) 的值,用一个循环求出所有 f(i)。

Java代码实现(时间复杂度O(n),空间复杂度O(n)): 

class Solution {
    public int maxSubArray(int[] nums) {
        int []arr=new int[nums.length];
        arr[0]=nums[0];
        int res=nums[0];
        for(int i=1;i

你可能感兴趣的:(LeetCode每日刷题,leetcode,算法,动态规划,Hot100)