【EI+Scopus检索】2025年6月半导体、通信、信息科学、智慧交通、机器学习、生成式AI、新能源领域国际学术会议来袭!
投稿倒计时!五大国际学术会议横跨六城,硕博生速来抢占学术C位!
大连的滨海风情、南充的巴蜀韵味、深圳的创新浪潮、香港的金融活力、镇江的江南底蕴——全球学术舞台等你闪耀!
import numpy as np
import matplotlib.pyplot as plt
# 肖克利二极管电流方程
def diode_current(V, Is=1e-12, Vt=0.026):
return Is * (np.exp(V / Vt) - 1)
# 电压范围模拟
V = np.linspace(-5, 0.7, 100)
I = diode_current(V)
plt.plot(V, I)
plt.title('Diode I-V Characteristics')
plt.xlabel('Voltage (V)')
plt.ylabel('Current (A)')
plt.grid(True)
plt.show()
import heapq
def a_star(start, goal, graph, heuristic):
open_set = []
heapq.heappush(open_set, (0, start))
came_from = {}
g_score = {node: float('inf') for node in graph}
g_score[start] = 0
while open_set:
current = heapq.heappop(open_set)[1]
if current == goal:
path = []
while current in came_from:
path.append(current)
current = came_from[current]
return path[::-1]
for neighbor in graph[current]:
tentative_g = g_score[current] + graph[current][neighbor]
if tentative_g < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g
f_score = tentative_g + heuristic(neighbor, goal)
heapq.heappush(open_set, (f_score, neighbor))
return None
# 示例路网(节点: {邻居: 距离})
graph = {
'A': {'B': 1, 'C': 3},
'B': {'D': 5},
'C': {'D': 2},
'D': {}
}
print(a_star('A', 'D', graph, lambda a,b: 0)) # 简单启发函数
from sklearn.ensemble import RandomForestClassifier
import numpy as np
# 训练数据(特征+标签)
X = np.array([[0,0], [1,1], [2,2], [3,3]])
y = np.array([0, 0, 1, 1])
# 创建含10棵决策树的随机森林
clf = RandomForestClassifier(n_estimators=10, max_depth=2)
clf.fit(X, y)
# 预测新样本
print(clf.predict([[2.5, 2.5]])) # 输出[1]
import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(100, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 784),
nn.Tanh()
)
def forward(self, z):
return self.model(z)
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(784, 128),
nn.LeakyReLU(0.2),
nn.Linear(128, 1),
nn.Sigmoid()
)
def forward(self, img):
return self.model(img.view(img.size(0), -1))
# 对抗训练循环代码框架(需配合数据集实现)
import numpy as np
def ekf_soc_estimation(V_measured, I_measured, SOC_prev, R0=0.05, Q=2.0, dt=1):
# 状态方程:SOC_k = SOC_{k-1} - (I*dt)/Q
SOC_pred = SOC_prev - (I_measured * dt)/Q
# 观测方程:V = OCV(SOC) - I*R0
OCV = 3.7 + 0.1*SOC_pred # 简化OCV模型
V_pred = OCV - I_measured*R0
# 卡尔曼增益计算(简化版本)
H = 0.1 # OCV-SOC曲线斜率
K = 0.1 # 预设增益系数
SOC_est = SOC_pred + K*(V_measured - V_pred)
return max(0, min(1, SOC_est))
# 示例调用
print(ekf_soc_estimation(3.65, 1.5, 0.8)) # 输出估算SOC值
学术无界,未来可期!从北国滨城到东方之珠,从巴蜀腹地到江南水乡,五大会议邀您共绘科研蓝图!投稿通道已开启,硕博生们速速行动,让世界见证你的学术光芒!