最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!
给大家整理的视频资料:
给大家整理的电子书资料:
如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以点击这里获取!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length", "function_call"]]
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal[“chat.completion”, “chat.completion.chunk”]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
@app.get(“/v1/models”, response_model=ModelList)
async def list_models():
model_card = ModelCard(id=“chatglm3-6b”)
return ModelList(data=[model_card])
@app.post(“/v1/chat/completions”, response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
repetition_penalty=request.repetition_penalty,
functions=request.functions,
)
logger.debug(f"==== request ====\n{gen_params}")
if request.stream:
# Use the stream mode to read the first few characters, if it is not a function call, direct stram output
predict_stream_generator = predict_stream(request.model, gen_params)
output = next(predict_stream_generator)
if not contains_custom_function(output):
return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
# Obtain the result directly at one time and determine whether tools needs to be called.
logger.debug(f"First result output:\n{output}")
function_call = None
if output and request.functions:
try:
function_call = process_response(output, use_tool=True)
except:
logger.warning("Failed to parse tool call")
# CallFunction
if isinstance(function_call, dict):
function_call = FunctionCallResponse(**function_call)
"""
In this demo, we did not register any tools.
You can use the tools that have been implemented in our `tool_using` and implement your own streaming tool implementation here.
Similar to the following method:
function_args = json.loads(function_call.arguments)
tool_response = dispatch_tool(tool_name: str, tool_params: dict)
"""
tool_response = ""
if not gen_params.get("messages"):
gen_params["messages"] = []
gen_params["messages"].append(ChatMessage(
role="assistant",
content=output,
))
gen_params["messages"].append(ChatMessage(
role="function",
name=function_call.name,
content=tool_response,
))
# Streaming output of results after function calls
generate = predict(request.model, gen_params)
return EventSourceResponse(generate, media_type="text/event-stream")
else:
# Handled to avoid exceptions in the above parsing function process.
generate = parse_output_text(request.model, output)
return EventSourceResponse(generate, media_type="text/event-stream")
# Here is the handling of stream = False
response = generate_chatglm3(model, tokenizer, gen_params)
# Remove the first newline character
if response["text"].startswith("\n"):
response["text"] = response["text"][1:]
response["text"] = response["text"].strip()
usage = UsageInfo()
function_call, finish_reason = None, "stop"
if request.functions:
try:
function_call = process_response(response["text"], use_tool=True)
except:
logger.warning("Failed to parse tool call, maybe the response is not a tool call or have been answered.")
if isinstance(function_call, dict):
finish_reason = "function_call"
function_call = FunctionCallResponse(**function_call)
message = ChatMessage(
role="assistant",
content=response["text"],
function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
finish_reason=finish_reason,
)
task_usage = UsageInfo.model_validate(response["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)
async def predict(model_id: str, params: dict):
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
previous_text = ""
for new_response in generate_stream_chatglm3(model, tokenizer, params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text):]
previous_text = decoded_unicode
finish_reason = new_response["finish_reason"]
if len(delta_text) == 0 and finish_reason != "function_call":
continue
function_call = None
if finish_reason == "function_call":
try:
function_call = process_response(decoded_unicode, use_tool=True)
except:
logger.warning(
"Failed to parse tool call, maybe the response is not a tool call or have been answered.")
if isinstance(function_call, dict):
function_call = FunctionCallResponse(**function_call)
delta = DeltaMessage(
content=delta_text,
role="assistant",
function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=delta,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
yield '[DONE]'
def predict_stream(model_id, gen_params):
“”"
The function call is compatible with stream mode output.
The first seven characters are determined.
If not a function call, the stream output is directly generated.
Otherwise, the complete character content of the function call is returned.
:param model_id:
:param gen_params:
:return:
"""
output = ""
is_function_call = False
has_send_first_chunk = False
for new_response in generate_stream_chatglm3(model, tokenizer, gen_params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(output):]
output = decoded_unicode
# When it is not a function call and the character length is> 7,
# try to judge whether it is a function call according to the special function prefix
if not is_function_call and len(output) > 7:
# Determine whether a function is called
is_function_call = contains_custom_function(output)
if is_function_call:
continue
# Non-function call, direct stream output
finish_reason = new_response["finish_reason"]
# Send an empty string first to avoid truncation by subsequent next() operations.
if not has_send_first_chunk:
message = DeltaMessage(
content="",
role="assistant",
function_call=None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=message,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
send_msg = delta_text if has_send_first_chunk else output
has_send_first_chunk = True
message = DeltaMessage(
content=send_msg,
role="assistant",
function_call=None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=message,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
if is_function_call:
yield output
else:
yield '[DONE]'
async def parse_output_text(model_id: str, value: str):
“”"
Directly output the text content of value
:param model_id:
:param value:
:return:
"""
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant", content=value),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
yield '[DONE]'
def contains_custom_function(value: str) -> bool:
“”"
Determine whether ‘function_call’ according to a special function prefix.
For example, the functions defined in "tool_using/tool_register.py" are all "get_xxx" and start with "get_"
[Note] This is not a rigorous judgment method, only for reference.
:param value:
:return:
"""
return value and 'get_' in value
if name == “main”:
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True)
if torch.cuda.is_available():
total_vram_in_gb = get_device_properties(0).total_memory / 1073741824
print(f'\033[32m显存大小: {total_vram_in_gb:.2f} GB\033[0m')
with torch.cuda.device(f'cuda:{0}'):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if total_vram_in_gb > 13:
model = model.half().cuda()
print(f'\033[32m使用显卡fp16精度运行\033[0m')
elif total_vram_in_gb > 10:
model = model.half().quantize(8).cuda()
print(f'\033[32m使用显卡int8量化运行\033[0m')
elif total_vram_in_gb > 4.5:
model = model.half().quantize(4).cuda()
print(f'\033[32m使用显卡int4量化运行\033[0m')
else:
model = model.float()
print('\033[32m使用cpu运行\033[0m')
else:
model = model.float()
print('\033[32m使用cpu运行\033[0m')
model = model.eval()
#bilibili@十字鱼 https://space.bilibili.com/893892 感谢参考——秋葉aaaki、大江户战士
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
## 2.部署One-Api
用于调用各种模型的节点,技术文档建议docker部署,可以用ubuntu20.04,windows程序里开启虚拟化。这里用VirtualBox,开启VT-x/AMD-V,需要在BIOS开启虚拟化功能,有些主板在安全设置里。网络端口转发添加3000、13000等,看需要增加规则。
打开ubuntu20,更新software可能需要一些时间,安装Code,Terminator用于之后的操作。首先解决权限问题。docker及docker守护程序的检查会涉及到权限问题。可将用户名添加到docker组,建议使用管理员权限操作。
sudo usermod -aG docker 用户名
打开code,新建terminal,拉取one-api的镜像,端口为13000
docker run --name one-api -d --restart always -p 13000:3000 -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api
进入localhost:13000,登录root,密码123456
chatglm3的Base URL:http//localhost:8000

继续添加m3e渠道,Base URL:http://localhost:6200
添加新令牌,提交。复制箭头下第一个到txt黏贴,例如:[https://chat.oneapi.pro/#/?settings={"key":"sk-fAAfFClsyVXxvAgp57Ab758260124a958aF00a2d49CcB625","url":"http://localhost:3000"}]( )
用docker部署m3e模型,默认用CPU运行:
docker run -d -p 6200:6008 --name=m3e-large-api [registry.cn-hangzhou.aliyuncs.com/fastgpt\_docker/m3e-large-api:latest]( )
使用GPU运行:
docker run -d -p 6200:6008 --gpus all --name=m3e-large-api [registry.cn-hangzhou.aliyuncs.com/fastgpt\_docker/m3e-large-api:latest]( )
原镜像:
docker run -d -p 6200:6008 --name=m3e-large-api stawky/m3e-large-api:latest
成功运行后测试,会反馈一组嵌入向量数据,说明成功部署
curl --location --request POST ‘http://localhost:6200/v1/embeddings’
–header ‘Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk’
–header ‘Content-Type: application/json’
–data-raw ‘{
“model”: “m3e”,
“input”: [“laf是什么”]
}’
## 3.部署FastGPT
FastGPT也是Linux部署,这里就用Ubuntu20,打开Code,新建Terminal
下载docker-compose文件:
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
下载config文件:
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
拉取镜像:docker-compose pull
在后台运行容器:docker-compose up -d
FastGPT 4.6.8后mango副本集需要手动初始化操作
docker ps
docker exec -it mongo bash
mongo -u myname -p mypassword --authenticationDatabase admin
rs.initiate({
_id: “rs0”,
members: [
{ _id: 0, host: “mongo:27017” }
]
})
rs.status()
docker-compose文件修改OPENAI\_BASE\_URL:http://localhost:13000/v1
连接到One-API的端口,localhost改为本地地址
docker-compose文件修改CHAT\_API\_KEY:填入从OneAPI令牌复制的key
config文件修改,直接复制
{
“systemEnv”: {
“openapiPrefix”: “fastgpt”,
“vectorMaxProcess”: 15,
“qaMaxProcess”: 15,
“pgHNSWEfSearch”: 100
},
“llmModels”: [
{
“model”: “chatglm3”,
“name”: “chatglm3”,
“maxContext”: 4000,
“maxResponse”: 4000,
“quoteMaxToken”: 2000,
“maxTemperature”: 1,
“vision”: false,
“defaultSystemChatPrompt”: “”
},
{
“model”: “gpt-3.5-turbo-1106”,
“name”: “gpt-3.5-turbo”,
“maxContext”: 16000,
“maxResponse”: 4000,
“quoteMaxToken”: 13000,
“maxTemperature”: 1.2,
“inputPrice”: 0,
“outputPrice”: 0,
“censor”: false,
“vision”: false,
“datasetProcess”: false,
“toolChoice”: true,
“functionCall”: false,
“customCQPrompt”: “”,
“customExtractPrompt”: “”,
“defaultSystemChatPrompt”: “”,
“defaultConfig”:{}
},
{
“model”: “gpt-3.5-turbo-16k”,
“name”: “gpt-3.5-turbo-16k”,
“maxContext”: 16000,
“maxResponse”: 16000,
“quoteMaxToken”: 13000,
“maxTemperature”: 1.2,
“inputPrice”: 0,
“outputPrice”: 0,
“censor”: false,
“vision”: false,
“datasetProcess”: true,
“toolChoice”: true,
“functionCall”: false,
“customCQPrompt”: “”,
“customExtractPrompt”: “”,
“defaultSystemChatPrompt”: “”,
“defaultConfig”:{}
},
{
“model”: “gpt-4-0125-preview”,
“name”: “gpt-4-turbo”,
“maxContext”: 125000,
“maxResponse”: 4000,
“quoteMaxToken”: 100000,
“maxTemperature”: 1.2,
“inputPrice”: 0,
“outputPrice”: 0,
“censor”: false,
“vision”: false,
“datasetProcess”: false,
“toolChoice”: true,
“functionCall”: false,
“customCQPrompt”: “”,
“customExtractPrompt”: “”,
“defaultSystemChatPrompt”: “”,
最全的Linux教程,Linux从入门到精通
======================
linux从入门到精通(第2版)
Linux系统移植
Linux驱动开发入门与实战
LINUX 系统移植 第2版
Linux开源网络全栈详解 从DPDK到OpenFlow
第一份《Linux从入门到精通》466页
====================
内容简介
====
本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。
本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。
需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以点击这里获取!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。
本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。
需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以点击这里获取!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!