电力负荷预测需同时考虑:
Y t + 1 = f ( G , X t − T : t ) ( G 为电网拓扑图, X 为历史序列 ) Y_{t+1} = f(G, X_{t-T:t}) \quad (G为电网拓扑图,X为历史序列) Yt+1=f(G,Xt−T:t)(G为电网拓扑图,X为历史序列)
处理电网拓扑结构的消息传播机制:
H ( l + 1 ) = σ ( D ~ − 1 2 A ~ D ~ − 1 2 H ( l ) W ( l ) ) H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)}) H(l+1)=σ(D~−21A~D~−21H(l)W(l))
其中:
门控机制实现长期记忆:
f t = σ ( W f [ h t − 1 , x t ] + b f ) i t = σ ( W i [ h t − 1 , x t ] + b i ) C ~ t = tanh ( W C [ h t − 1 , x t ] + b C ) C t = f t ⊙ C t − 1 + i t ⊙ C ~ t o t = σ ( W o [ h t − 1 , x t ] + b o ) h t = o t ⊙ tanh ( C t ) \begin{aligned} f_t &= \sigma(W_f [h_{t-1}, x_t] + b_f) \\ i_t &= \sigma(W_i [h_{t-1}, x_t] + b_i) \\ \tilde{C}_t &= \tanh(W_C [h_{t-1}, x_t] + b_C) \\ C_t &= f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ o_t &= \sigma(W_o [h_{t-1}, x_t] + b_o) \\ h_t &= o_t \odot \tanh(C_t) \end{aligned} ftitC~tCtotht=σ(Wf[ht−1,xt]+bf)=σ(Wi[ht−1,xt]+bi)=tanh(WC[ht−1,xt]+bC)=ft⊙Ct−1+it⊙C~t=σ(Wo[ht−1,xt]+bo)=ot⊙tanh(Ct)
class STGCN(nn.Module):
def __init__(self, num_nodes, in_dim, hidden_dim):
super().__init__()
self.gcn1 = GCNConv(in_dim, hidden_dim)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, batch_first=True)
self.gcn2 = GCNConv(hidden_dim, 1)
def forward(self, x, edge_index):
# x: [batch_size, seq_len, num_nodes, features]
batch_size, seq_len = x.shape[:2]
# 空间特征提取
spatial_feat = []
for t in range(seq_len):
h = self.gcn1(x[:,t], edge_index) # [batch, nodes, hidden]
spatial_feat.append(h)
spatial_feat = torch.stack(spatial_feat, dim=1) # [batch, seq, nodes, hidden]
# 时间特征提取
temporal_in = spatial_feat.reshape(batch_size*num_nodes, seq_len, hidden_dim)
temporal_out, _ = self.lstm(temporal_in) # [batch*nodes, seq, hidden]
# 空间特征融合
output = self.gcn2(temporal_out[:, -1], edge_index)
return output.squeeze()
class PowerGridDataset(Dataset):
def __init__(self, data, edge_index, window_size=24):
self.data = data # [num_nodes, num_timesteps]
self.edge_index = edge_index
self.window = window_size
def __getitem__(self, idx):
x = self.data[:, idx:idx+self.window]
y = self.data[:, idx+self.window]
return torch.FloatTensor(x.T), torch.FloatTensor(y)
数据规格:
效果指标:
模型 | MAE(MW) | RMSE(MW) | R² |
---|---|---|---|
ARIMA | 45.2 | 63.7 | 0.81 |
LSTM | 38.6 | 54.2 | 0.86 |
STGCN | 27.3 | 41.8 | 0.92 |
param_grid = {
'gcn_layers': [1, 2],
'lstm_units': [64, 128],
'time_window': [12, 24, 48],
'learning_rate': [1e-3, 5e-4]
}
# 使用Optuna进行贝叶斯优化
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=100)
数据预处理:
mean = data.mean(axis=1, keepdims=True)
std = data.std(axis=1, keepdims=True)
data = np.clip(data, mean-3*std, mean+3*std)
图结构增强:
corr_matrix = np.corrcoef(data)
adj += (corr_matrix > 0.7).astype(float)
动态图结构学习(AAAI 2023)
时空注意力机制(ICML 2023)
PowerForecast-Transformer
GridGraphBenchmark
延伸思考:实际部署中发现,当电网拓扑发生变更(如新增变电站)时,传统GCN需要重新训练。最新研究方向正在探索零样本拓扑迁移学习方案,使用Graph Meta Learning方法实现快速适应新电网结构。