残差连接residual connection

残差连接residual connection,假设神经网络某一层对input x进行了一个F操作,变为F(x),那么正常的神经网络输出为F(x),而加入残差连接以后,输出为x+F(x)

那么残差结构有什么好处呢?显而易见:因为增加了一项,那么该层网络对x求偏导的时候,多了一个常数项,所以在反向传播过程中,梯度连乘,也不会造成梯度消失。

你可能感兴趣的:(神经网络,深度学习)