Server-Sent Events(服务器推送事件)是一种基于HTTP的服务器到客户端单向通信协议,其核心技术特征包括:
协议交互示例:
GET /weather/stream HTTP/1.1
Accept: text/event-stream
HTTP/1.1 200 OK
Content-Type: text/event-stream
event: temperature
data: {"value":25.6,"unit":"°C"}
event: humidity
data: {"value":68,"unit":"%"}
相较于传统请求-响应模式,SSE在智能服务中展现独特优势:
维度 | 传统HTTP | SSE |
---|---|---|
实时性 | 需客户端轮询 | 服务端主动推送 |
连接开销 | 高频次短连接 | 单次长连接 |
数据连续性 | 离散数据包 | 持续数据流 |
适用场景 | 即时响应需求 | 实时监控/流式生成 |
典型应用场景:
pom.xml关键依赖:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webfluxartifactId>
dependency>
<dependency>
<groupId>org.springframework.aigroupId>
<artifactId>spring-ai-mcp-server-webfluxartifactId>
dependency>
application.yml配置:
spring:
ai:
mcp:
server:
name: weather-service
sse:
path: /weather/stream
keep-alive-interval: 30s
@Tool(description = "实时天气推送")
public Flux<String> streamWeather(double lat, double lon) {
return Flux.interval(Duration.ofSeconds(5))
.flatMap(tick ->
Mono.fromCallable(() -> fetchWeather(lat, lon))
.map(this::formatUpdate);
}
private String formatUpdate(WeatherData data) {
return String.format("""
event:update
data:%s
""", new ObjectMapper().writeValueAsString(data));
}
技术要点:
public Flux<ServerSentEvent> controlledStream() {
return Flux.create(sink -> {
WeatherSubscriber subscriber = new WeatherSubscriber(sink);
sink.onCancel(subscriber::cleanup);
registerSubscriber(subscriber);
}, FluxSink.OverflowStrategy.BUFFER);
}
class WeatherSubscriber implements Subscriber<WeatherData> {
private final FluxSink<ServerSentEvent> sink;
private Subscription subscription;
void onNext(WeatherData data) {
if (sink.requestedFromDownstream() > 0) {
sink.next(createEvent(data));
}
}
}
背压策略对比:
策略 | 描述 | 适用场景 |
---|---|---|
BUFFER | 缓存未处理元素 | 允许短暂过载 |
DROP | 丢弃新元素 | 实时性优先 |
LATEST | 仅保留最新元素 | 状态更新类数据 |
ERROR | 抛出异常终止流 | 严格数据一致性要求 |
application.yml:
spring:
ai:
mcp:
client:
sse:
connections:
weather:
url: http://localhost:8080
reconnect-delay: 3s
max-retries: 5
@Bean
public CommandLineRunner streamRunner(WebClient webClient) {
return args -> {
webClient.get()
.uri("/weather/stream")
.accept(MediaType.TEXT_EVENT_STREAM)
.retrieve()
.bodyToFlux(String.class)
.subscribe(event -> {
System.out.println("收到更新:" + event);
});
};
}
事件处理增强:
.subscribe(
event -> handleEvent(event), // 正常处理
error -> log.error("流异常", error), // 错误处理
() -> log.info("流关闭"), // 完成处理
sub -> sub.request(10) // 背压控制
);
RetryBackoffSpec retrySpec = Retry.backoff(5, Duration.ofSeconds(1))
.maxBackoff(Duration.ofSeconds(30))
.jitter(0.5)
.doBeforeRetry(ctx -> log.warn("第{}次重连", ctx.totalRetries()));
flux.retryWhen(retrySpec)
.repeatWhen(Repeat.times(3).backoff(Duration.ofMinutes(5)));
重连策略参数:
参数 | 默认值 | 说明 |
---|---|---|
maxAttempts | 5 | 最大重试次数 |
firstBackoff | 1s | 初始重试间隔 |
maxBackoff | 30s | 最大重试间隔 |
jitterFactor | 0.5 | 抖动系数(0-1) |
配置参数优化:
server:
reactor:
netty:
max-connections: 1000
pool:
max-idle-time: 60s
compression:
enabled: true
mime-types: text/event-stream
线程模型优化:
@Bean
public ReactorResourceFactory resourceFactory() {
ReactorResourceFactory factory = new ReactorResourceFactory();
factory.setUseGlobalResources(false);
factory.setLoopResources(LoopResources.create("sse-loop", 4, true));
return factory;
}
滑动窗口算法实现:
Flux<WeatherData> controlledFlux = originalFlux
.window(Duration.ofSeconds(1), 3) // 每秒最多3条
.concatMap(window -> window);
Micrometer监控配置:
@Bean
MeterRegistryCustomizer<MeterRegistry> metrics() {
return registry -> {
DistributionStatisticConfig config = DistributionStatisticConfig.builder()
.percentiles(0.5, 0.95)
.build();
registry.config().meterFilter(
new MeterFilter() {
@Override
public DistributionStatisticConfig configure(
Meter.Id id,
DistributionStatisticConfig config) {
return config.merge(config);
}
}
);
};
}
关键监控指标:
HTTPS配置:
server:
ssl:
enabled: true
key-store: classpath:keystore.p12
key-store-password: changeit
key-store-type: PKCS12
JWT鉴权实现:
@Bean
SecurityWebFilterChain securityChain(ServerHttpSecurity http) {
return http
.authorizeExchange(ex -> ex
.pathMatchers("/weather/stream").authenticated()
)
.oauth2ResourceServer(oauth2 -> oauth2
.jwt(jwt -> jwt.jwtAuthenticationConverter(jwtConverter()))
.build();
}
字段级加密:
public record EncryptedWeather(
@EncryptedField(algorithm = "AES/CBC/PKCS5Padding")
String temperature,
@EncryptedField(algorithm = "RSA/ECB/OAEPWithSHA-256AndMGF1Padding")
String location
) {}
架构设计:
交互流程:
event:thinking
data:{"status":"正在查询地理位置"}
event:searching
data:{"location":"北京","progress":50}
event:answer
data:{"text":"北京当前气温25℃,晴..."}
@startuml
package "协议演进" {
[二进制协议] as bin
[多路复用] as mux
[QoS分级] as qos
}
bin --> mux : 提升传输效率
mux --> qos : 支持优先级
qos --> [5G场景] : 网络自适应
@enduml
结语
深入探讨了基于Spring AI Alibaba实现MCP协议SSE流式服务的完整技术方案,涵盖协议原理、服务端/客户端实现、性能优化、安全策略等核心内容。通过实时天气服务的完整案例,展示了如何构建高可靠、低延迟的智能流式服务。随着实时AI需求的持续增长,SSE与MCP的结合将为物联网、金融科技、智能交互等领域提供强有力的技术支持。