图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)

图神经网络实战(12)——图同构网络

    • 0. 前言
    • 1. 图同构网络原理
    • 2. 构建 GIN 模型执行图分类
      • 2.1 图分类任务
      • 2.2 PROTEINS 数据集分析
      • 2.3 构建 GIN 实现图分类
      • 2.4 GCN 与 GIN 性能差异分析
    • 3. 提升模型性能
    • 小结
    • 系列链接

0. 前言

Weisfeiler-Leman (WL) 测试提供了一个理解图神经网络 (Graph Neural Networks, GNN) 表达能力的框架,利用该框架我们比较了不同的 GNN 层,在本节中,我们将利用 WL 测试结果尝试设计比图卷积网络 (Graph Convolutional Network, GCN)、图注意力网络 (Graph Attention Networks,GAT) 和 GraphSAGE 更强大的 GNN 架构——图同构网络 (Graph Isomorphism Network, GIN)。然后,使用

你可能感兴趣的:(图神经网络从入门到项目实战,GNN,图神经网络,深度学习)