Spark SQL架构工作原理及流程解析

Spark SQL架构工作原理及流程解析,spark sql从shark发展而来,Shark为了实现Hive兼容,在HQL方面重用了Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑。

Spark SQL兼容Hive,因为Spark SQL架构与Hive底层结构相似,Spark SQL复用了Hive提供的元数据仓库(Metastore)、HiveQL、用户自定义函数(UDF)以及序列化和反序列工具(SerDes),深入了解Spark SQL底层架构:

Spark SQL架构工作原理及流程解析_第1张图片
Spark SQL架构

Spark SQL架构与Hive架构相比除了把底层的MapReduce执行引擎更改为Spark还修改了Catalyst优化器,Spark SQL快速的计算效率得益于Catalyst优化器。从HiveQL被解析成语法抽象树起,执行计划生成和优化的工作全部交给Spark SQL的Catalyst优化器进行负责和管理。

Catalyst优化器是一个新的可扩展的查询优化器,它是基于Scala函数式编程结构,Spark SQL开发工程师设计可扩展架构主要是为了在今后的版本迭代时,能够轻松地添加新的优化技术和功能,尤其是为了解决大数据生产环境中遇到的问题(例如,针对半结构化数据和高级数据分析),另外,Spark作为开源项目,外部开发人员可以针对项目需求自行扩展Catalyst优化器的功能。Spark SQL的工作原理图:

Spark SQL架构工作原理及流程解析_第2张图片
Spark SQL工作原理

Spark要想很好地支持SQL,就需要完成解析(Parser)、优化(Optimizer)、执行(Execution)三大过程。Catalyst优化器在执行计划生成和优化的工作时候,它离不开自己内部的五大组件&#

你可能感兴趣的:(spark,sql,架构,大数据,数据库)