每日一题算法——长度最小的子数组

长度最小的子数组

力扣题目链接

解法:滑动窗口
精髓在于:先让这个滑动窗口尾端不断增大,当它大于等于target时,先判断此时与子数组长度是否需要更新,判断完成之后,这时可以将其头部后移。

class Solution {
public:
    int minSubArrayLen(int s, vector& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        int i=0;
        for(int j=0;j=s)
            {
                subLength = j-i+1;
                result = result

其他解法:
暴力解法
这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。

代码如下:

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
            sum = 0;
            for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
                sum += nums[j];
                if (sum >= s) { // 一旦发现子序列和超过了s,更新result
                    subLength = j - i + 1; // 取子序列的长度
                    result = result < subLength ? result : subLength;
                    break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
                }
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

时间复杂度:O(n^2)
空间复杂度:O(1)
后面力扣更新了数据,暴力解法已经超时了。

你可能感兴趣的:(算法,算法,leetcode,数据结构)