【IEEE Xplore、EI、Scopus检索】2025年5月人工智能、智能制造、通信系统领域国际学术会议强势来袭!研究生必看!
重庆、广州、武汉、成都,四座城市,四场学术盛宴!无论您是人工智能、智能制造、通信系统领域的研究者,还是光学成像、电力系统的探索者,这里都有您的舞台!快来投稿,与全球学者共话前沿科技!
# 基于支持向量机(SVM)的工业产品质量预测
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd
# 加载工业传感器数据集(示例:轴承故障预测)
data = pd.read_csv('bearing_failure.csv')
X = data.drop('failure', axis=1)
y = data['failure']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练SVM模型
model = SVC(kernel='rbf', C=10, gamma=0.1)
model.fit(X_train, y_train)
# 预测与评估
y_pred = model.predict(X_test)
print(f"预测准确率: {accuracy_score(y_test, y_pred):.2f}")
# QPSK调制与解调仿真
import numpy as np
import matplotlib.pyplot as plt
# 生成随机二进制数据
num_symbols = 1000
data = np.random.randint(0, 4, num_symbols) # 0-3对应4种符号
# QPSK调制
symbols = np.exp(1j * (np.pi/4 + data * np.pi/2))
plt.scatter(np.real(symbols), np.imag(symbols))
plt.title("QPSK星座图")
plt.show()
# 添加高斯噪声
noise_power = 0.1
noise = np.random.normal(0, np.sqrt(noise_power/2), (num_symbols, 2)
received = symbols + noise[:,0] + 1j*noise[:,1]
# QPSK解调
demod_data = np.angle(received) // (np.pi/2) % 4
ber = np.mean(data != demod_data)
print(f"误码率(BER): {ber:.4f}")
# 基于Canny算法的光学图像边缘检测
import cv2
import matplotlib.pyplot as plt
# 读取光学图像
image = cv2.imread('optical_image.jpg', cv2.IMREAD_GRAYSCALE)
# Canny边缘检测
edges = cv2.Canny(image, threshold1=50, threshold2=150)
# 可视化结果
plt.figure(figsize=(10,5))
plt.subplot(121), plt.imshow(image, cmap='gray'), plt.title('原始图像')
plt.subplot(122), plt.imshow(edges, cmap='gray'), plt.title('Canny边缘检测')
plt.show()
# 基于LSTM的电力负荷预测
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 生成模拟电力负荷数据(24小时*365天)
time = np.arange(0, 8760, 1)
load = 500 + 200*np.sin(2*np.pi*time/24) + 50*np.random.normal(size=len(time))
# 数据预处理
def create_dataset(data, look_back=24):
X, y = [], []
for i in range(len(data)-look_back):
X.append(data[i:i+look_back])
y.append(data[i+look_back])
return np.array(X), np.array(y)
X, y = create_dataset(load)
X = X.reshape(X.shape[0], X.shape[1], 1)
# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(24, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# 训练模型
model.fit(X, y, epochs=20, batch_size=32)
# 预测未来24小时负荷
last_24h = load[-24:].reshape(1, 24, 1)
prediction = model.predict(last_24h)
print(f"预测负荷值: {prediction[0][0]:.2f} MW")
建议运行环境:Python 3.8+,需安装scikit-learn, numpy, matplotlib, opencv-python, tensorflow
等库。