Deepsort目标跟踪代码

import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import numpy as np

import torch
import torch.backends.cudnn as cudnn

from ultralytics.utils.downloads import attempt_download_asset
from ultralytics.utils.checks import check_imgsz, check_imshow
from ultralytics.utils.torch_utils import select_device, time_sync
from ultralytics.data.loaders import LoadStreams, LoadImagesAndVideos
from ultralytics.data.augment import LetterBox
from ultralytics.utils.ops import non_max_suppression
from ultralytics.nn.tasks import attempt_load_weights
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from utils import scale_coords

palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'


def xyxy_to_xywh(*xyxy):
    """" Calculates the relative bounding box from absolute pixel values. """
    bbox_left = min([xyxy[0].item(), xyxy[2].item()])
    bbox_top = min([xyxy[1].item(), xyxy[3].item()])
    bbox_w = abs(xyxy[0].item() - xyxy[2].item())
    bbox_h = abs(xyxy[1].item() - xyxy[3].item())
    x_c = (bbox_left + bbox_w / 2)
    y_c = (bbox_top + bbox_h / 2)
    w = bbox_w
    h = bbox_h
    return x_c, y_c, w, h


def xyxy_to_tlwh(bbox_xyxy):
    tlwh_bboxs = []
    for i, box in enumerate(bbox_xyxy):
        x1, y1, x2, y2 = [int(i) for i in box]
        top = x1
        left = y1
        w = int(x2 - x1)
        h = int(y2 - y1)
        tlwh_obj = [top, left, w, h]
        tlwh_bboxs.append(tlwh_obj)
    return tlwh_bboxs


def compute_color_for_labels(label):
    """
    Simple function that adds fixed color depending on the class
    """
    color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
    return tuple(color)


def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
    for i, box in enumerate(bbox):
        x1, y1, x2, y2 = [int(i) for i in box]
        x1 += offset[0]
        x2 += offset[0]
        y1 += offset[1]
        y2 += offset[1]
        # box text and bar
        id = int(identities[i]) if identities is not None else 0
        color = compute_color_for_labels(id)
        label = '{}{:d}'.format("", id)
        t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
        cv2.rectangle(
            img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
        cv2.putText(img, label, (x1, y1 +
                                 t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
    return img


def detect(opt):
    out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate = \
        opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \
            opt.save_txt, opt.img_size, opt.evaluate
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    attempt_download_asset(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)

    # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
    # its own .txt file. Hence, in that case, the output folder is not restored
    if not evaluate:
        if os.path.exists(out):
            pass
            shutil.rmtree(out)  # delete output folder
        os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load_weights(yolo_weights, device=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_imgsz(imgsz, stride=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    # Check if environment supports image displays
    if show_vid:
        show_vid = check_imshow()

    if webcam:
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source)
    else:
        dataset = LoadImagesAndVideos(source)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()

    save_path = str(Path(out))
    # extract what is in between the last '/' and last '.'
    txt_file_name = source.split('/')[-1].split('.')[0]
    txt_path = str(Path(out)) + '/' + txt_file_name + '.txt'
    letterbox = LetterBox(imgsz, auto=True, stride=stride)

    for frame_idx, (path, im0s, _) in enumerate(dataset):
        vid_cap = dataset.cap
        path = str(path[0])
        im0s = np.array(im0s).squeeze()
        img = letterbox(image=im0s)
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_sync()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_sync()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                xywh_bboxs = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    # to deep sort format
                    x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
                    xywh_obj = [x_c, y_c, bbox_w, bbox_h]
                    xywh_bboxs.append(xywh_obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(xywh_bboxs)
                confss = torch.Tensor(confs)

                # pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)
                    # to MOT format
                    tlwh_bboxs = xyxy_to_tlwh(bbox_xyxy)

                    # Write MOT compliant results to file
                    if save_txt:
                        for j, (tlwh_bbox, output) in enumerate(zip(tlwh_bboxs, outputs)):
                            bbox_top = tlwh_bbox[0]
                            bbox_left = tlwh_bbox[1]
                            bbox_w = tlwh_bbox[2]
                            bbox_h = tlwh_bbox[3]
                            identity = output[-1]
                            with open(txt_path, 'a') as f:
                                f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_top,
                                                               bbox_left, bbox_w, bbox_h, -1, -1, -1,
                                                               -1))  # label format

            else:
                deepsort.increment_ages()

            # Print time (inference + NMS)
            # print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if show_vid:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_vid:
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path += '.mp4'

                    vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                vid_writer.write(im0)

    if save_txt or save_vid:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--yolo_weights', type=str, default='weights/yolo11s.pt', help='model.pt path')
    parser.add_argument('--deep_sort_weights', type=str, default='weights/ckpt.t7', help='ckpt.t7 path')
    # file/folder, 0 for webcam
    parser.add_argument('--source', type=str, default='test.mp4', help='source')
    parser.add_argument('--output', type=str, default='inference/output', help='output folder')  # output folder
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
    parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
    parser.add_argument('--save-vid', default=True, action='store_true', help='save video tracking results')
    parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
    # class 0 is person, 1 is bycicle, 2 is car... 79 is oven
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 16 17')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--evaluate', action='store_true', help='augmented inference')
    parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
    args = parser.parse_args()
    args.img_size = check_imgsz(args.img_size)

    with torch.no_grad():
        detect(args)

你可能感兴趣的:(目标跟踪,人工智能,计算机视觉)