当机器需要从经验中汲取知识时,概率建模成为了一个至关重要的工具。它不仅为理解学习机制提供了理论框架,而且在实际应用中,特别是在设计能够从数据中学习的机器时,概率建模展现出了其独特的价值。概率框架的核心在于它如何处理模型和预测中的不确定性,这种能力在科学数据分析、机器学习、机器人技术、认知科学以及人工智能等多个领域中都扮演着至关重要的角色。
本文旨在为读者提供一个关于概率建模框架的深入介绍,并探讨该领域的一些前沿进展。特别地,我们将探讨概率编程如何使得建模过程更加灵活和高效,贝叶斯优化如何帮助我们在不确定性环境中做出更明智的决策,数据压缩如何帮助我们更有效地存储和传输信息,以及自动模型发现如何助力我们更快速地找到最适合数据的模型。这些进展不仅推动了机器学习领域的发展,也为解决实际问题提供了新的视角和方法。
在探讨机器学习的核心时,本篇文章深入分析了概率框架和贝叶斯推理的基本概念。文章着重强调了不确定性在机器学习中的核心地位,并指出它对于提升算法性能至关重要。同时,文章还介绍了当前研究领域的几个前沿方向,这些方向不仅推动了机器学习的发展,也为解决实际问题提供了新的思路和方法。
首先,文章讨论了概率编程,这是一种灵活的建模工具,它允许我们更直观地表示和推理不确定性。通过概率编程,我们可以构建复杂的模型,以捕捉数据中的复杂模式和结构。
其次,贝叶斯优化作为一种在不确定性环境中进行决策的有效方法,被广泛应用于各种机器学习应用中。它能够帮助我们在资源有限的情况下,通过迭代地收集数据并更新模型,来找到最优解。
此外,概率数据压缩作为数据处理的关键技术之一,通过利用数据中的冗余和相关性来减少存储和传输成本。在大数据和云计算时代,概率数据压缩显得尤为重要。
文章还提到了从数据中自动发现合理且可解释的模型的重要性。随着数据量的不断增长,如何从中提取有用的信息和知识成为了机器学习领域的一大挑战。通过利用概率框架和贝叶斯推理,我们可以自动发现与数据最匹配的模型,并解释这些模型背后的含义。
最后,文章讨论了层次建模在学习多个相关模型时的应用。层次建模允许我们构建具有层次结构的模型,以捕捉不同模型之间的依赖关系和交互作用。这对于处理复杂数据和解决复杂问题具有重要意义。
数据是机器学习系统的核心要素,然而,即使是庞大的大数据集,如果无法从中提炼出有价值的知识或推论,那么这些数据本身便显得毫无意义。几乎所有的机器学习任务本质上都可以归结为从观察到的数据中推断出那些缺失或潜在的数据——我将这些任务统称为“推断”、“预测”或“预估”。
以分类任务为例,比如我们希望通过患者的基因表达模式将白血病患者归类为该疾病的四个主要亚型之一。在此情境下,观察到的数据是基因表达模式与已知亚型的配对,而我们需要推断的则是新患者的未知亚型。为了从已有数据中推断出未知的信息,学习系统需要依据一定的假设进行工作;这些假设的集合便构成了一个模型。
模型的形式可以多样,有的简单而刚性,如传统的统计线性回归模型;有的则复杂且灵活,如庞大的深度神经网络,甚至可以是具有无限参数的模型。但无论模型如何构建,如果它不能对新数据进行有效的预测,那么这个模型就无法被证实其有效性,正如哲学家卡尔·波普尔在评估假设时所强调的那样,或者如理论物理学家沃尔夫冈·泡利所言,这样的模型是“毫无意义的”。
在建模过程中,不确定性是不可避免且至关重要的。不确定性有多种形式:在最低层次上,它可能源于测量噪声,如图像中的像素噪声或模糊;在更高级别上,模型可能包含众多参数,如线性回归中的系数,这些参数的不确定性会影响模型对新数据的预测能力;最后,在最高层次上,甚至模型的整体结构也可能存在不确定性——比如,我们是应该选择线性回归还是神经网络,如果是后者,又应该设计多少层网络结构等。
为了有效地表达和处理这些不确定性,我们采用概率建模的方法。概率论为我们提供了一种数学语言,用于描述和操作不确定性,正如微积分在处理变化率时的作用一样。幸运的是,概率建模的概念相对简单:我们使用概率分布来表示模型中所有不确定的、未观察到的变量(包括结构、参数和与噪声相关的因素),以及它们与数据之间的关系。然后,利用概率论的基本原理,我们根据观察到的数据来推断那些未观察到的变量。通过将先验概率分布(在观察数据之前定义的)转化为后验分布(在观察数据之后得到的),学习过程便得以进行。这种将概率论应用于数据学习的方法,我们称之为贝叶斯学习。
除了概念上的简洁性,概率框架在赋予机器智能方面还具有一系列引人注目的特性。这些特性使得概率建模成为了一个强大的工具,能够构建出复杂且易于理解的模型。
首先,简单的概率分布可以作为构建更大、更复杂模型的基石。在过去二十年里,图形模型成为了表示这种组合概率模型的主要范式,包括有向图(如贝叶斯网络和信念网络)、无向图(如马尔可夫网络和随机场),以及融合了有向和无向边的混合图。概率编程进一步扩展了图形模型的概念,提供了一种更加灵活和强大的方式来构建和表示概率模型。
概率模型的组合性是其另一个显著优势。通过将简单的概率分布组合在一起,我们可以构建出复杂且易于理解的模型。与将非线性动态系统(如递归神经网络)耦合在一起相比,这些构建块在更大模型中的行为通常更加直观和易于理解。特别地,一个定义良好的概率模型总是能够生成数据,这些“想象”的数据为我们提供了一个洞察模型“思想”的窗口,有助于我们理解初始的先验假设以及模型在后续阶段所学到的内容。
此外,概率建模在概念上也具有优势,因为它为人工智能系统中的学习提供了一个规范的理论框架。Cox公理定义了表示信念的一些期望属性,其中一个关键结果是,信念程度(从“不可能”到“绝对确定”)必须遵循所有概率论规则。这证明了在人工智能中使用主观贝叶斯概率表示的合理性。荷兰书定理进一步强化了这一观点,它基于一个代理的信念强度可以通过其是否愿意接受各种赔率的赌注来评估的假设。该定理指出,除非一个人工智能系统(或人类)的信念程度与概率规则一致,否则它将面临接受注定会输掉钱的赌注的风险。
由于这些和许多其他关于智能中处理不确定性原则重要性的论点的力量,贝叶斯概率建模不仅作为人工智能系统中理性的理论基础出现,而且作为人类和动物规范行为的模型出现。因此,许多研究致力于探索神经回路如何可能实现贝叶斯推理,这进一步证明了概率建模在理解和构建智能系统方面的广泛应用和重要性。
概率论的基本原理,即求和规则(Sum Rule)和乘积规则(Product Rule),为我们理解不确定性提供了强大的工具。
考虑两个随机变量 x x x 和 y y y,它们分别取值于集合 X X X 和 Y Y Y。以天气为例, x x x 和 y y y 可能分别代表剑桥和伦敦的天气状况,两者都取值于集合 X = Y = { rainy , cloudy , sunny } X = Y = \{ \text{rainy}, \text{cloudy}, \text{sunny} \} X=Y={ rainy,cloudy,sunny}。
求和规则:
P ( x ) = ∑ y ∈ Y P ( x , y ) P(x)=\displaystyle\sum_{y\in{Y}}{P(x,y)} P(x)=y∈Y∑P(x,y)
乘积规则:
P ( x , y ) = P ( x ) P ( y ∣ x ) P(x,y)=P(x)P(y|x) P(x,y)=P(x)P(y∣x)
求和规则(Sum Rule)表明, x x x 的边际概率(Marginal Probability)可以通过对 y y y 的所有可能值求和(对于连续变量则是积分)联合概率 P ( x , y ) P(x, y) P(x,y) 来得到。
乘积规则(Product Rule)则表明,联合概率 P ( x , y ) P(x, y) P(x,y) 可以分解为边际概率 P ( x ) P(x) P(x) 和条件概率 P ( y ∣ x ) P(y | x)