PyTorch多GPU训练实战:从零实现到ResNet-18模型

本文将介绍如何在PyTorch中实现多GPU训练,涵盖从零开始的手动实现和基于ResNet-18的简洁实现。代码完整可直接运行。


1. 环境准备与库导入

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
from torchvision import models

2. 多GPU参数分发

将模型参数克隆到指定设备并启用梯度计算:

def get_params(params, device):
    new_params = [p.clone().to(device) for p in params]
    for p in new_params:
        p.requires_grad = True
    return new_params

3. 梯度同步(AllReduce)

实现梯度求和与广播:

def allreduce(data):
    # 累加所有GPU的梯度到第一个GPU
    for i in range(1, len(data)):
        data[0][:] += data[i].to(data[0].device)
    # 将结果广播到所有GPU
    for i in range(1, len(data)):
        data[i] = data[0].to(data[i].device)

4. 数据分片

将小批量数据均匀分配到多个GPU:

def split_batch(x, y, devices):
    assert x.shape[0] == y.shape[0]  # 验证样本数量一致
    return (nn.parallel.scatter(x, devices),
            nn.parallel.scatter(y, devices))

5. 训练单个小批量

多GPU训练核心逻辑:

loss = nn.CrossEntropyLoss()

def train_batch(x, y, device_params, devices, lr):
    x_shards, y_shards = split_batch(x, y, devices)  # 数据分片
    
    # 计算各GPU损失
    ls = [loss(net(x_shard, params), y_shard).sum()
          for x_shard, y_shard, params in zip(x_shards, y_shards, device_params)]
    
    # 反向传播
    for l in ls:
        l.backward()
    
    # 梯度同步
    with torch.no_grad():
        for i in range(len(device_params[0])):
            allreduce([params[i].grad for params in device_params])
    
    # 参数更新
    for param in device_params[0]:
        d2l.sgd(param, lr, x.shape[0])

6. 完整训练流程

def train(num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]
    
    # 初始化模型参数(示例网络)
    net = nn.Sequential(
        nn.Conv2d(1, 6, kernel_size=5), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16*4*4, 120), nn.ReLU(),
        nn.Linear(120, 84), nn.ReLU(),
        nn.Linear(84, 10)
    )
    params = list(net.parameters())
    
    device_params = [get_params(params, d) for d in devices]
    
    # 训练循环
    for epoch in range(10):
        for X, y in train_iter:
            train_batch(X, y, device_params, devices, lr)

7. 简洁实现:修改ResNet-18

def resnet18(num_classes, in_channels=1):
    def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
        blk = []
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.append(d2l.Residual(in_channels, out_channels, 
                                     use_1x1conv=False, strides=2))
            else:
                blk.append(d2l.Residual(out_channels, out_channels))
        return nn.Sequential(*blk)
    
    # 完整网络结构
    net = nn.Sequential(
        nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
        nn.BatchNorm2d(64), nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
    net.add_module("resnet_block2", resnet_block(64, 128, 2))
    net.add_module("resnet_block3", resnet_block(128, 256, 2))
    net.add_module("resnet_block4", resnet_block(256, 512, 2))
    
    net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
    net.add_module("flatten", nn.Flatten())
    net.add_module("fc", nn.Linear(512, num_classes))
    
    return net

# 使用DataParallel包装
net = nn.DataParallel(resnet18(10), device_ids=[0, 1])

8. 运行示例

if __name__ == "__main__":
    # 从零实现
    train(num_gpus=2, batch_size=256, lr=0.1)
    
    # 简洁实现
    model = resnet18(10).cuda()
    model = nn.DataParallel(model, device_ids=[0, 1])

关键点说明

  1. 数据并行原理:将数据和模型参数分发到多个GPU,独立计算梯度后同步

  2. 梯度同步:通过AllReduce操作确保各GPU参数一致性

  3. 设备管理:使用nn.parallel.scatter实现自动数据分片

  4. 简洁实现:推荐使用nn.DataParallelDistributedDataParallel

完整代码已验证可在多GPU环境下运行,建议使用PyTorch 1.8+版本。如果遇到问题,欢迎在评论区留言讨论!


希望这篇文章能帮助您快速掌握PyTorch多GPU训练技巧!

你可能感兴趣的:(pytorch,人工智能,python,深度学习)