技术栈:
Python语言、Django框架、scrapy爬虫框架、Echarts可视化、下厨房网站爬虫数据
1)数据采集:
本应用采集目前的下厨房网站(https://www.xiachufang.com/)的食谱内容,对本周最受欢迎的食谱和新秀食谱进行爬取,对采集获得的食物制作方法数据进行初步处理,得到原始文本的食谱数据,包含了脱敏处理后的食谱名称、用料、做法、时间,食物图片等内容,根据分析的需要,从数据中抽取出“具体做法”一列。
1)数据采集:
本应用采集目前的下厨房网站(https://www.xiachufang.com/)的食谱内容,对本周最受欢迎的食谱和新秀食谱进行爬取,对采集获得的食物制作方法数据进行初步处理,得到原始文本的食谱数据,包含了脱敏处理后的食谱名称、用料、做法、时间,食物图片等内容,根据分析的需要,从数据中抽取出“具体做法”一列。
(2)数据预处理:
原始数据中存在异常值、重复值、系统自动推荐等数据,这部分数据价值含量低、数据结构混乱,严重影响数据挖掘模型的执行效率,导致挖掘结果的偏差,所以进行数据清洗是必不可少的。结合原始数据的具体情况,数据预处理采用文本去重、机械压缩去词和短句删除。
(3)中文分词及用户关注点:
中文分词是将句子中汉字按照序列切成一个个单独的中文词语,结巴词库提供了精确模式、全模式和搜索引擎模式三种分词模式,是Python中一个重要的第三方中文分词函数库。Jieba词库能够支持中文简体和繁体,在分析用户评论中能够对文本评论数据提取关键词。
用户关注点是用户对某一商品特定属性的关注点,反映客户在某种商品上的聚焦点,关注某一特性的用户数量越高,说明该商品的这一属性对用户来说越重要,一般是食谱标题、所用原料、具体做法、食物图片。分析利用Jieba词库,结合用户用词习惯,设置以“家常菜”、“快手菜”、“下饭菜”、”早餐”、“减肥”、“烘焙”、“小吃”、“汤羹”八个为用户常关注的属性。
(二)研究的方法:
⑴文献资料法:
利用图书馆以及互联网等方式查询相关的文献资料,梳理出相关的知识点,加以分析与研究。它是有目的、有计划、系统地收集有关研究对象的方法。
⑵调查法:
为了更好地了解食物推荐系统应用的发展以及真实现状,在同学、朋友、亲人以及路人等进行现场的询问,并做好记录,看观察对象对食物食材以及制作方面的喜好,根据现场调查,进行剖析,深入研究。
⑶分析归纳法:
研究分析查阅的文献资料,归纳总结其研究内容并合理分类。根据比较研究及案例分析的结果,总结归纳出食物推荐系统应用的发展中好的做法和经验。
✌**感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!**✌
由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看获取联系方式
复制链接浏览器打开:https://g.h5gdvip.com/p/hvvwznb6