from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[numpy.nan,9.80,numpy.nan],
"最高报价":[49.80,23.10,58.78]}
goods_in=DataFrame(paints,index=[1,2,3])
print(goods_in)
goods_in_nonull=goods_in.dropna(axis=1)
print(goods_in_nonull)
车名 最低报价 最高报价
1 奥迪Q5L NaN 49.80
2 哈弗H6 9.8 23.10
3 奔驰GLC NaN 58.78
车名 最高报价
1 奥迪Q5L 49.80
2 哈弗H6 23.10
3 奔驰GLC 58.78
from pandas import DataFrame
kindergarten1={"小朋友数目":{"1班":32,"2班":20},
"小朋友睡床":{"1班":40,"2班":30},
"上课教室":{"1班":3,"2班":2}}
kindergarten2={"小朋友数目":{"1班":10,"2班":21,"3班":15},
"小朋友睡床":{"1班":11,"2班":21,"3班":16},
"上课教室":{"1班":1,"2班":2,"3班":2}}
kindergarten_dataframe1=DataFrame(kindergarten1)
kindergarten_dataframe2=DataFrame(kindergarten2)
kindergarten_all=kindergarten_dataframe1+kindergarten_dataframe2
print(kindergarten_all)
小朋友数目 小朋友睡床 上课教室
1班 42.0 51.0 4.0
2班 41.0 51.0 4.0
3班 NaN NaN NaN
from pandas import DataFrame,Series
kindergarten1={"小朋友数目":[32,20],
"小朋友睡床":[40,30],
"上课教室":[3,2]}
kindergarten2={"小朋友数目":16,
"小朋友睡床":19,
"上课教室":2}
kindergarten_dataframe1=DataFrame(kindergarten1)
kindergarten_series1=Series(kindergarten2)
kindergarten_all=kindergarten_dataframe1+kindergarten_series1
print(kindergarten_all)
小朋友数目 小朋友睡床 上课教室
0 48 59 5
1 36 49 4
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[numpy.nan,9.80,numpy.nan],
"最高报价":[49.80,numpy.nan,58.78]}
goods_in=DataFrame(paints,index=[1,2,3])
goods_in_isnull=goods_in.isnull()
print(goods_in_isnull)
车名 最低报价 最高报价
1 False True False
2 False False True
3 False True False
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[numpy.nan,9.80,numpy.nan],
"最高报价":[49.80,23.10,58.78]}
goods_in=DataFrame(paints,index=[1,2,3])
goods_in_nonull=goods_in.fillna(10)
print(goods_in_nonull)
车名 最低报价 最高报价
1 奥迪Q5L 10.0 49.80
2 哈弗H6 9.8 23.10
3 奔驰GLC 10.0 58.78
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[numpy.nan,9.80,numpy.nan],
"最高报价":[49.80,23.10,numpy.nan]}
goods_in=DataFrame(paints,index=[1,2,3])
goods_in_fill=goods_in.fillna({"最低报价":10,"最高报价":20})
print(goods_in_fill)
车名 最低报价 最高报价
1 奥迪Q5L 10.0 49.8
2 哈弗H6 9.8 23.1
3 奔驰GLC 10.0 20.0
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[9.80,numpy.nan,15.42],
"最高报价":[49.80,23.10,numpy.nan]}
goods_in=DataFrame(paints,index=[1,2,3])
goods_in_fill=goods_in.fillna(method="ffill")
print(goods_in_fill)
车名 最低报价 最高报价
1 奥迪Q5L 9.80 49.8
2 哈弗H6 9.80 23.1
3 奔驰GLC 15.42 23.1
from pandas import DataFrame
import numpy as np
paints = {
"车名": ["奥迪Q5L", "哈弗H6", "奔驰GLC"],
"最低报价": [9.80, np.nan, 15.42],
"最高报价": [49.80, 23.10, np.nan]
}
goods_in = DataFrame(paints, index=[1, 2, 3])
medians = goods_in[["最低报价", "最高报价"]].dropna().median()
goods_in_fill = goods_in.fillna(medians)
print(goods_in_fill)
车名 最低报价 最高报价
1 奥迪Q5L 9.80 49.8
2 哈弗H6 9.80 23.1
3 奔驰GLC 15.42 49.8
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,9.80,14.35],
"最高报价":[49.80,23.10,60.45,49.80,23.10]}
goods_in=DataFrame(paints)
goods_in_duplicated=goods_in.duplicated()
print(goods_in_duplicated)
0 False
1 False
2 False
3 True
4 True
dtype: bool
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,9.80,14.35],
"最高报价":[49.80,23.10,60.45,49.80,23.10]}
goods_in=DataFrame(paints)
goods_in_duplicated=goods_in.drop_duplicates()
print(goods_in_duplicated)
车名 最低报价 最高报价
0 奥迪Q5L 9.80 49.80
1 哈弗H6 14.35 23.10
2 奔驰GLC 15.42 60.45
from pandas import DataFrame
import numpy
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,9.80,14.35],
"最高报价":[49.80,23.10,60.45,49.80,23.10]}
goods_in=DataFrame(paints)
goods_in_duplicated=goods_in.drop_duplicates(["车名","最低报价","最高报价"],keep="last")
print(goods_in_duplicated)
车名 最低报价 最高报价
2 奔驰GLC 15.42 60.45
3 奥迪Q5L 9.80 49.80
4 哈弗H6 14.35 23.10
from pandas import DataFrame
import numpy as np
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,9.80,np.nan],
"最高报价":[49.80,23.45,np.nan,49.80,23.10]}
goods_in=DataFrame(paints)
goods_in_replace=goods_in.replace(np.nan,20.50)
print(goods_in_replace)
车名 最低报价 最高报价
0 奥迪Q5L 9.80 49.80
1 哈弗H6 14.35 23.45
2 奔驰GLC 15.42 20.50
3 奥迪Q5L 9.80 49.80
4 哈弗H6 20.50 23.10
from pandas import DataFrame
import numpy as np
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,0,np.nan],
"最高报价":[0,23.45,np.nan,49.80,23.10]}
goods_in=DataFrame(paints)
goods_in_replace=goods_in.replace({np.nan:20.50,0:25.47})
print(goods_in_replace)
车名 最低报价 最高报价
0 奥迪Q5L 9.80 25.47
1 哈弗H6 14.35 23.45
2 奔驰GLC 15.42 20.50
3 奥迪Q5L 25.47 49.80
4 哈弗H6 20.50 23.10
import numpy as np
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,0,12.35],
"最高报价":[0,23.45,26.47,49.80,23.10]}
goods_in=DataFrame(paints,index=[0,1,2,3,4])
goods_in_permutation=np.random.permutation(goods_in)
print(goods_in_permutation)
[['哈弗H6' 12.35 23.1]
['哈弗H6' 14.35 23.45]
['奔驰GLC' 15.42 26.47]
['奥迪Q5L' 0.0 49.8]
['奥迪Q5L' 9.8 0.0]]
from pandas import DataFrame
import numpy as np
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奥迪Q5L","哈弗H6"],
"最低报价":[9.80,14.35,15.42,0,12.35],
"最高报价":[0,23.45,26.47,49.80,23.10]}
goods_in=DataFrame(paints,index=[0,1,2,3,4])
goods_in_permutation=goods_in.take(np.random.permutation(len(goods_in)))
print(goods_in_permutation)
车名 最低报价 最高报价
4 哈弗H6 12.35 23.10
0 奥迪Q5L 9.80 0.00
3 奥迪Q5L 0.00 49.80
2 奔驰GLC 15.42 26.47
1 哈弗H6 14.35 23.45
from pandas import DataFrame
paints = {"车名": ["奥迪Q5L", "哈弗H6", "奔驰GLC"],
"最低报价": [38.78, 9.80, 39.48],
"最高报价": [49.80, 14.10, 58.78]}
goods_in = DataFrame(paints, index=[1, 2, 3])
f = lambda x: (x - x.min()) / (x.max() - x.min())
goods_in[["最低报价", "最高报价"]] = goods_in[["最低报价", "最高报价"]].apply(f)
print(goods_in)
车名 最低报价 最高报价
1 奥迪Q5L 0.976415 0.799015
2 哈弗H6 0.000000 0.000000
3 奔驰GLC 1.000000 1.000000
from pandas import DataFrame
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[38.78,9.80,39.48],
"最高报价":[49.80,14.10,58.78]}
goods_in=DataFrame(paints,index=["L车","K车","D车"])
goods_in=goods_in.sort_index()
print(goods_in)
车名 最低报价 最高报价
D车 奔驰GLC 39.48 58.78
K车 哈弗H6 9.80 14.10
L车 奥迪Q5L 38.78 49.80
from pandas import DataFrame
goods_in=DataFrame([["奥迪Q5L",38.78,49.80],["哈弗H6",9.80,58.78],["奔驰GLC",14.10,39.48]],
index=["L车","K车","D车"],columns=["names","low_price","high_price"])
goods_in=goods_in.sort_index(axis=1)
print(goods_in)
high_price low_price names
L车 49.80 38.78 奥迪Q5L
K车 58.78 9.80 哈弗H6
D车 39.48 14.10 奔驰GLC
from pandas import DataFrame
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[38.78,9.80,39.48],
"最高报价":[49.80,14.10,58.78]}
goods_in=DataFrame(paints,index=["L车","K车","D车"])
goods_in=goods_in.sort_index(ascending=False)
print(goods_in)
车名 最低报价 最高报价
L车 奥迪Q5L 38.78 49.80
K车 哈弗H6 9.80 14.10
D车 奔驰GLC 39.48 58.78
from pandas import DataFrame
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[38.78,9.80,39.48],
"最高报价":[49.80,14.10,58.78]}
goods_in=DataFrame(paints,index=[1,2,3])
goods_in=goods_in.sort_values(by="最低报价")
print(goods_in)
车名 最低报价 最高报价
2 哈弗H6 9.80 14.10
1 奥迪Q5L 38.78 49.80
3 奔驰GLC 39.48 58.78
from pandas import DataFrame
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],
"最低报价":[38.78,9.80,39.48],
"最高报价":[49.80,14.10,58.78]}
goods_in=DataFrame(paints,index=[1,2,3])
print(goods_in)
goods_in=goods_in.rank()
print(goods_in)
车名 最低报价 最高报价
1 奥迪Q5L 38.78 49.80
2 哈弗H6 9.80 14.10
3 奔驰GLC 39.48 58.78
车名 最低报价 最高报价
1 3.0 2.0 2.0
2 1.0 1.0 1.0
3 2.0 3.0 3.0
import pandas as pd
paints = {
"车名": ["奥迪Q5L", "哈弗H6", "奔驰GLC"],
"最低报价": [38.78, 9.80, 39.48],
"最高报价": [49.80, 14.10, 58.78]
}
goods_in = pd.DataFrame(paints, index=[1, 2, 3])
numeric_columns = ["最低报价", "最高报价"]
goods_in[numeric_columns] = goods_in[numeric_columns].rank()
print(goods_in)
车名 最低报价 最高报价
1 奥迪Q5L 2.0 2.0
2 哈弗H6 1.0 1.0
3 奔驰GLC 3.0 3.0
from pandas import DataFrame
paints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC","奔驰GLC","奥迪Q5L"],
"最低报价":[38.78,9.80,39.48,39.48,38.78],
"最高报价":[49.80,14.10,58.78,58.78,49.80]}
goods_in=DataFrame(paints,index=["一辆车","一辆车","一辆车","一辆车","一辆车"])
goods_in_unique=goods_in.index.is_unique
print(goods_in_unique)
goods_in_value=goods_in.index.unique()
print(goods_in_value)
False
Index(['一辆车'], dtype='object')
from pandas import DataFrame
paints={"地址":["北京市","大兴区","黄村镇","卫星城"],
"购物车内每件商品价格":[38.78,9.80,39.48,39.48]}
goods_in=DataFrame(paints)
goods_sum=goods_in.sum()
print(goods_sum)
地址 北京市大兴区黄村镇卫星城
购物车内每件商品价格 127.54
dtype: object
import pandas as pd
import numpy as np
def calculate_total_purchases(data_dict):
"""
此函数用于将输入的字典数据转换为 DataFrame,并计算每行的总和
:param data_dict: 包含会员购买信息的字典
:return: 每行的总和
"""
try:
df = pd.DataFrame(data_dict)
row_sums = df.select_dtypes(include=[np.number]).sum(axis=1, skipna=True)
return row_sums
except Exception as e:
print(f"计算过程中出现错误: {e}")
return None
paints = {
"会员名": ["小王", "小李", "小张", "小凤"],
"苹果": [5, 4, 3, np.nan],
"橘子": [4, 2, 1, 2],
"石榴": [3, 1, 1, np.nan]
}
goods_sum = calculate_total_purchases(paints)
if goods_sum is not None:
print(goods_sum)
0 12.0
1 7.0
2 5.0
3 2.0
dtype: float64
import pandas as pd
import numpy as np
def calculate_total_purchases(data_dict):
"""
该函数用于根据输入的会员购买信息字典,计算每个会员购买商品的总数量。
:param data_dict: 包含会员名和各商品购买数量的字典
:return: 包含每个会员购买商品总数量的 Series 对象
"""
try:
df = pd.DataFrame(data_dict)
quantity_columns = df.drop(columns=['会员名'])
total_purchases = quantity_columns.sum(axis=1, skipna=False)
return total_purchases
except KeyError as ke:
print(f"数据字典中缺少必要的列: {ke}")
except Exception as e:
print(f"发生未知错误: {e}")
paints = {
"会员名": ["小王", "小李", "小张", "小凤"],
"苹果": [5, 4, 3, np.nan],
"橘子": [4, 2, 1, 2],
"石榴": [3, 1, 1, np.nan]
}
result = calculate_total_purchases(paints)
if result is not None:
print(result)
0 12.0
1 7.0
2 5.0
3 NaN
dtype: float64
from pandas import DataFrame
import numpy as np
paints={"会员名":["小王","小李","小张","小凤"],
"苹果":[5,4,3,np.nan],
"橘子":[4,2,1,2],
"石榴":[3,1,1,np.nan]}
goods_in=DataFrame(paints)
goods_sum=goods_in[["苹果","橘子","石榴"]].cumsum()
print(goods_sum)
苹果 橘子 石榴
0 5.0 4 3.0
1 9.0 6 4.0
2 12.0 7 5.0
3 NaN 9 NaN
from pandas import DataFrame
import numpy as np
paints={"会员名":["小王","小李","小张","小凤"],
"苹果":[5,4,3,np.nan],
"橘子":[4,2,1,2],
"石榴":[3,1,1,np.nan]}
goods_in=DataFrame(paints)
goods_sum=goods_in.describe()
print(goods_sum)
苹果 橘子 石榴
count 3.0 4.000000 3.000000
mean 4.0 2.250000 1.666667
std 1.0 1.258306 1.154701
min 3.0 1.000000 1.000000
25% 3.5 1.750000 1.000000
50% 4.0 2.000000 1.000000
75% 4.5 2.500000 2.000000
max 5.0 4.000000 3.000000