【八股学习】HashMap源码总结

初始化

构造方法

可见,HashMap有四种构造方法:

其中1、3、4可以归为一类:使用默认的或者指定的初始化容量和负载因子,如果使用默认容量16,则会在第一次插入时在 resize 中自行计算 threshold。如果自行指定参数则直接赋值(通过 tableSizeFor 方法扩容到与 initialCapacity 最接近的 2 的幂次方大小) threshold,然后进行扩容判断。

    // 默认构造函数。
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
     }

     // 包含另一个“Map”的构造函数
     public HashMap(Map<? extends K, ? extends V> m) {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);//下面会分析到这个方法
     }

     // 指定“容量大小”的构造函数
     public HashMap(int initialCapacity) {
         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     }

     // 指定“容量大小”和“负载因子”的构造函数
     public HashMap(int initialCapacity, float loadFactor) {
         if (initialCapacity < 0)
             throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         if (loadFactor <= 0 || Float.isNaN(loadFactor))
             throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
         this.loadFactor = loadFactor;
         // 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化
         this.threshold = tableSizeFor(initialCapacity);
     }

其中第二种使用其他Map进行初始化的方法如下:
1、如果还没有初始化,则先通过负载因子和传入map的元素个数计算所需的最小容量。然后进行最大上界判断。如果最小容量大于threshold,那就初始化为 tableSizeFor 的结果。这里的 if (t > threshold) 实际上永远都为真,因为未初始化时 threshold = 0,使用这个同之前一样是为了之后扩容 resize 做准备

2、初始化了则进行判断并resize

3、最后放入到新的map中,如果是未初始化的table会在putVal中resize初始化扩容。

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            /*
             * 未初始化,s为m的实际元素个数,ft=s/loadFactor => s=ft*loadFactor, 跟我们前面提到的
             * 阈值=容量*负载因子 是不是很像,是的,ft指的是要添加s个元素所需的最小的容量
             */
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            /*
             * 根据构造函数可知,table未初始化,threshold实际上是存放的初始化容量,如果添加s个元素所
             * 需的最小容量大于初始化容量,则将最小容量扩容为最接近的2的幂次方大小作为初始化。
             * 注意这里不是初始化阈值
             */
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中,如果table未初始化,putVal中会调用resize初始化或扩容
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

put方法

jdk1.8

HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。

  1. table未初始化或者长度为0,进行扩容
  2. (n - 1) & hash 确定元素存放在哪个桶中,如果桶为空,则直接生成新结点放入桶中
  3. 桶中存在元素,则发生了hash冲突,判断第一个结点的key和插入key是否相同,如果相同则用新的value值替换掉旧的value值。
  4. 如果第一个结点是红黑树结点,则调用方法插入到树中
  5. 不是树节点则开始遍历链表找是否存在相同的key来替换或插入
  6. 如果找到key相同的结点则停止遍历,并替换value值
  7. 没有找到,则在链表尾部插入新结点
  8. 更改modCount和size并判断是否需要进行扩容
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素(处理hash冲突)
    else {
        Node<K,V> e; K k;
        //快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
        // 判断插入的是否是红黑树节点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 不是红黑树节点则说明为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
                    // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
                    // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) {
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

jdk1.7

  1. 定位到的哈希桶没有元素直接插入
  2. 否则遍历链表比较key是否相同,如果相同直接修改
  3. 不相同,则使用头插法插入元素
public V put(K key, V value)
    if (table == EMPTY_TABLE) {
    inflateTable(threshold);
}
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    addEntry(hash, key, value, i);  // 再插入
    return null;
}

get方法

  1. 通过hash值获取到桶中的第一个元素,如果不存在则返回null
  2. 如果数组第一个元素key想等则直接返回第一个结点
  3. 如果第一个结点不相等,且还有后继结点则继续遍历
  4. 如果第一个结点是树结点则在树中继续寻找
  5. 否则在链表中往后查找是否存在要找的元素
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 数组元素相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个节点
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 在链表中get
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

resize方法

进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。resize 方法实际上是将 table 初始化和 table 扩容 进行了整合,底层的行为都是给 table 赋值一个新的数组。

已经初始化过了:

  1. oldCap超过上限,不再进行扩容
  2. oldCap没超过上限,则newCap为oldCap的2倍,同理 threshold 也变成两倍

还未初始化,且在创建时指定了初始化容量:

  1. 此时初始化容量存放在 oldThr 中,将 newCap = oldThr
  2. 因为newThr == 0,这里要重新计算扩容界限,newCap * loadFactor计算,如果超过了上界则设定为上界

还未初始化,且未在创建时指定了初始化容量:

  1. newCap为初始化的 16 容量
  2. newThr为自行计算的默认容量*默认负载因子

threshold = newThr;Node[] newTab = (Node[])new Node[newCap];table = newTab; 重新设置table和threshold

  1. 把每个bucket都移动到新的buckets中
  2. 如果只有一个节点,计算 e.hash & (newCap - 1) 直接放入新的位置即可
  3. 如果是树结点,拆分红黑树,<=6 个元素则转为链表,否则保持树结构
  4. 如果是链表结点,根据hash的高位(e.hash & oldCap == 0 , 相当于判断hash 在 newCap的最高位是不是1)来判断是存放在原先的桶中,还是移到 + oldCap 索引的桶中

可知,在插入、扩容之前,table一直是处于未初始化的状态,和ArrayList的初始化很像。并且只有 threshold 这个成员变量一直在改变

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        // 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量
        newCap = oldThr;
    else {
        // signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        // 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化,
    	// 或者扩容前的旧容量小于16,在这里计算新的resize上限
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    // 只有一个节点,直接计算元素新的位置即可
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 将红黑树拆分成2棵子树,如果子树节点数小于等于 UNTREEIFY_THRESHOLD(默认为 6),则将子树转换为链表。
                    // 如果子树节点数大于 UNTREEIFY_THRESHOLD,则保持子树的树结构。
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else {
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

hash方法 jdk1.8

  1. java的hashCode方法是一个native方法,使用32位的int来存储hash码
  2. 通过无符号右移16位,实现了更好地扰动和区分不同的hashCode,从而避免hash冲突(否则一个16容量(16 - 1 = 4位 1111)的数组,只要32位的hash中最后四位相同 通过 & 运算就会落在一个hash桶中,非常不合理)
    static final int hash(Object key) {
      int h;
      // key.hashCode():返回散列值也就是hashcode
      // ^:按位异或
      // >>>:无符号右移,忽略符号位,空位都以0补齐
      return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
  }

treeifyBin 方法

  1. 对于是否要树化再次进行判断,数组长度<64则优先扩容
  2. 否则转换为红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    // 判断当前数组的长度是否小于 64
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        // 如果当前数组的长度小于 64,那么会选择先进行数组扩容
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        // 否则才将列表转换为红黑树

        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

你可能感兴趣的:(八股,学习,java,算法)