基于hf的trl框架的deepseek-r1-zero实现与训练

导入模块和promt格式

"""
Reference:

"""
import re
import torch
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import GRPOConfig, GRPOTrainer

# Load and prep dataset

SYSTEM_PROMPT = """
Respond in the following format:

...


...

"""

XML_COT_FORMAT = """\

{reasoning}


{answer}

"""

对数据进行简单的处理和如何对答案进行提取(这也隐式地做了格式奖励的约束,即如果没有按照正确的格式输出的话,就无法提取答案,无法提取答案就不会被奖励)

# An implicit format reward
def extract_xml_answer(text: str) -> str:
    answer = text.split("")[-1]
    answer = answer.split("")[0]
    return answer.strip()

def extract_hash_answer(text: str) -> str | None:
    if "####" not in text:
        return None
    return text.split("####")[1].strip()

# uncomment middle messages for 1-shot prompting
def get_gsm8k_questions(split = "train") -> Dataset:
    data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore
    data = data.map(lambda x: { # type: ignore
        'prompt': [
            {'role': 'system', 'content': SYSTEM_PROMPT},
            {'role': 'user', 'content': x['question']}
        ],
        'answer': extract_hash_answer(x['answer'])
    }) # type: ignore
    return data # type: ignore

dataset = get_gsm8k_questions()

接下来是奖励函数的定义

# Reward functions

def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
    responses = [completion[0]['content'] for completion in completions]
    q = prompts[0][-1]['content']
    extracted_responses = [extract_xml_answer(r) for r in responses]
    print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
    return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]

def int_reward_func(completions, **kwargs) -> list[float]:
    responses = [completion[0]['content'] for completion in completions]
    extracted_responses = [extract_xml_answer(r) for r in responses]
    return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]

def strict_format_reward_func(completions, **kwargs) -> list[float]:
    """Reward function that checks if the completion has a specific format."""
    pattern = r"^\n.*?\n\n\n.*?\n\n$"
    responses = [completion[0]["content"] for completion in completions]
    matches = [re.match(pattern, r) for r in responses]
    return [0.5 if match else 0.0 for match in matches]

def soft_format_reward_func(completions, **kwargs) -> list[float]:
    """Reward function that checks if the completion has a specific format."""
    pattern = r".*?\s*.*?"
    responses = [completion[0]["content"] for completion in completions]
    matches = [re.match(pattern, r) for r in responses]
    return [0.5 if match else 0.0 for match in matches]

def count_xml(text) -> float:
    count = 0.0
    if text.count("\n") == 1:
        count += 0.125
    if text.count("\n\n") == 1:
        count += 0.125
    if text.count("\n\n") == 1:
        count += 0.125
        count -= len(text.split("\n\n")[-1])*0.001
    if text.count("\n") == 1:
        count += 0.125
        count -= (len(text.split("\n")[-1]) - 1)*0.001
    return count

def xmlcount_reward_func(completions, **kwargs) -> list[float]:
    contents = [completion[0]["content"] for completion in completions]
    return [count_xml(c) for c in contents]

以及模型的定义,这里使用了trl的GRPOConfig接口

model_name = "Qwen/Qwen2.5-0.5B-Instruct"

output_dir="outputs/Qwen-0.5B-GRPO"
run_name="Qwen-0.5B-GRPO-gsm8k"

training_args = GRPOConfig(
    output_dir=output_dir,
    run_name=run_name,
    learning_rate=5e-6,
    adam_beta1 = 0.9,
    adam_beta2 = 0.99,
    weight_decay = 0.1,
    warmup_ratio = 0.1,
    lr_scheduler_type='cosine',
    logging_steps=1,
    bf16=True,
    per_device_train_batch_size=1,
    gradient_accumulation_steps=4,
    num_generations=16,
    max_prompt_length=256,
    max_completion_length=200,
    num_train_epochs=1,
    save_steps=100,
    max_grad_norm=0.1,
    log_on_each_node=False,
    use_vllm=False,
    vllm_gpu_memory_utilization=.3,
    vllm_device="cuda:0",
    report_to="none"
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map=None
).to("cuda")

tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

下面是训练的代码,但是peft在我训练过程中会出现问题,所以我把它注释掉了

# use peft at your own risk; not working for me with multi-GPU training
trainer = GRPOTrainer(
    model=model,
    processing_class=tokenizer,
    reward_funcs=[
        xmlcount_reward_func,
        soft_format_reward_func,
        strict_format_reward_func,
        int_reward_func,
        correctness_reward_func],
    args=training_args,
    train_dataset=dataset,
    #peft_config=peft_config
)
trainer.train()

trainer.save_model(output_dir)

保存模型

from transformers import AutoModelForCausalLM, AutoTokenizer

# 加载保存的模型和tokenizer
model = AutoModelForCausalLM.from_pretrained("outputs/Qwen-0.5B-GRPO/checkpoint-900").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("outputs/Qwen-0.5B-GRPO/checkpoint-900")

体会感悟

  1. 在实际训练时候,基本上前300个checkpoint都是无效的,所以说r1的冷处理还是比较必要的。
  2. 这个一个比较小的基础模型下,也能通过训练得到比较好的效果,只凭借单个模型,那么投入几十万倍的数据训练和投入的话,效果肯定会更好。

如果想了解更多信息包括测试方面的代码,请进入我的github主页看完整的内容,对你有帮助的话点颗收藏谢谢:https://github.com/koNoJOJOga/DEEPSEEK-/tree/main/基于hf的trl实现的grpo的DeepSeek-R1-zero实现

后续也会尝试自己实现grpo框架,可以关注一下,对于本博客有什么问题也欢迎留言和评论。

你可能感兴趣的:(deepseek,python,AIGC)