《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于深度学习的行人跌倒检测系统】 |
9.【基于深度学习的PCB板缺陷检测系统】 | 10.【基于深度学习的生活垃圾分类目标检测系统】 |
11.【基于深度学习的安全帽目标检测系统】 | 12.【基于深度学习的120种犬类检测与识别系统】 |
13.【基于深度学习的路面坑洞检测系统】 | 14.【基于深度学习的火焰烟雾检测系统】 |
15.【基于深度学习的钢材表面缺陷检测系统】 | 16.【基于深度学习的舰船目标分类检测系统】 |
17.【基于深度学习的西红柿成熟度检测系统】 | 18.【基于深度学习的血细胞检测与计数系统】 |
19.【基于深度学习的吸烟/抽烟行为检测系统】 | 20.【基于深度学习的水稻害虫检测与识别系统】 |
21.【基于深度学习的高精度车辆行人检测与计数系统】 | 22.【基于深度学习的路面标志线检测与识别系统】 |
23.【基于深度学习的智能小麦害虫检测识别系统】 | 24.【基于深度学习的智能玉米害虫检测识别系统】 |
25.【基于深度学习的200种鸟类智能检测与识别系统】 | 26.【基于深度学习的45种交通标志智能检测与识别系统】 |
27.【基于深度学习的人脸面部表情识别系统】 | 28.【基于深度学习的苹果叶片病害智能诊断系统】 |
29.【基于深度学习的智能肺炎诊断系统】 | 30.【基于深度学习的葡萄簇目标检测系统】 |
31.【基于深度学习的100种中草药智能识别系统】 | 32.【基于深度学习的102种花卉智能识别系统】 |
33.【基于深度学习的100种蝴蝶智能识别系统】 | 34.【基于深度学习的水稻叶片病害智能诊断系统】 |
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于深度学习的智能草莓病害检测与分割系统】 |
37.【基于深度学习的复杂场景下船舶目标检测系统】 | 38.【基于深度学习的农作物幼苗与杂草检测系统】 |
39.【基于深度学习的智能道路裂缝检测与分析系统】 | 40.【基于深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于深度学习的遥感地理空间物体检测系统】 | 42.【基于深度学习的无人机视角地面物体检测系统】 |
43.【基于深度学习的木薯病害智能诊断与防治系统】 | 44.【基于深度学习的野外火焰烟雾检测系统】 |
45.【基于深度学习的脑肿瘤智能检测系统】 | 46.【基于深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于深度学习的橙子病害智能诊断与防治系统】 | 48.【基于深度学习的车辆检测追踪与流量计数系统】 |
49.【基于深度学习的行人检测追踪与双向流量计数系统】 | 50.【基于深度学习的反光衣检测与预警系统】 |
51.【基于深度学习的危险区域人员闯入检测与报警系统】 | 52.【基于深度学习的高密度人脸智能检测与统计系统】 |
53.【基于深度学习的CT扫描图像肾结石智能检测系统】 | 54.【基于深度学习的水果智能检测系统】 |
55.【基于深度学习的水果质量好坏智能检测系统】 | 56.【基于深度学习的蔬菜目标检测与识别系统】 |
57.【基于深度学习的非机动车驾驶员头盔检测系统】 | 58.【太基于深度学习的阳能电池板检测与分析系统】 |
59.【基于深度学习的工业螺栓螺母检测】 | 60.【基于深度学习的金属焊缝缺陷检测系统】 |
61.【基于深度学习的链条缺陷检测与识别系统】 | 62.【基于深度学习的交通信号灯检测识别】 |
63.【基于深度学习的草莓成熟度检测与识别系统】 | 64.【基于深度学习的水下海生物检测识别系统】 |
65.【基于深度学习的道路交通事故检测识别系统】 | 66.【基于深度学习的安检X光危险品检测与识别系统】 |
67.【基于深度学习的农作物类别检测与识别系统】 | 68.【基于深度学习的危险驾驶行为检测识别系统】 |
69.【基于深度学习的维修工具检测识别系统】 | 70.【基于深度学习的维修工具检测识别系统】 |
71.【基于深度学习的建筑墙面损伤检测系统】 | 72.【基于深度学习的煤矿传送带异物检测系统】 |
73.【基于深度学习的老鼠智能检测系统】 | 74.【基于深度学习的水面垃圾智能检测识别系统】 |
75.【基于深度学习的遥感视角船只智能检测系统】 | 76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】 |
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 | 78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 |
79.【基于深度学习的果园苹果检测与计数系统】 | 80.【基于深度学习的半导体芯片缺陷检测系统】 |
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统】 | 82.【基于深度学习的运动鞋品牌检测与识别系统】 |
83.【基于深度学习的苹果叶片病害检测识别系统】 | 84.【基于深度学习的医学X光骨折检测与语音提示系统】 |
85.【基于深度学习的遥感视角农田检测与分割系统】 | 86.【基于深度学习的运动品牌LOGO检测与识别系统】 |
87.【基于深度学习的电瓶车进电梯检测与语音提示系统】 | 88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
目前大多数SOTA模型都是建立在Faster-RCNN模型的基础之上。Faster R-CNN是一种对象检测模型,它可以识别图像中的对象,并在它们周围绘制边界框,同时还可以对这些对象进行分类。这是一个两级探测器:
损失函数:
I)分类损失:帮助模型决定锚是背景还是前景。
II)回归损失:帮助调整锚框以更精确地适应对象。
两种训练方式:
pip install torch torchvision
import torch
from torch.utils.data import DataLoader
import torchvision
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision.datasets import ImageFolder
from torchvision import transforms
import torchvision.transforms as T
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
PyTorch的torchvision
提供了一个在COCO上预训练的更快的R-CNN模型。您可以通过更改最后一层中的类数量来修改您自己的数据集。
# Load the pre-trained Faster R-CNN model with a ResNet-50 backbone
model = fasterrcnn_resnet50_fpn(pretrained=True)
# Number of classes (your dataset classes + 1 for background)
num_classes = 3 # For example, 2 classes + background
# Get the number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# Replace the head of the model with a new one (for the number of classes in your dataset)
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
*框*
)和标签(*标签*
)的图像和目标字典。如有必要,请创建自定义数据集类。您可以使用 torchvision.datasets.ImageFolder
并在注释文件中提供边界框或创建自定义Dataset
类。
# Define transformations (e.g., resizing, normalization)
transform = T.Compose([
T.ToTensor(),
])
# Custom Dataset class or using an existing one
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, transforms=None):
# Initialize dataset paths and annotations here
self.transforms = transforms
# Your dataset logic (image paths, annotations, etc.)
def __getitem__(self, idx):
# Load image
img = ... # Load your image here
# Load corresponding bounding boxes and labels
boxes = ... # Load or define bounding boxes
labels = ... # Load or define labels
# Create a target dictionary
target = {}
target["boxes"] = torch.tensor(boxes, dtype=torch.float32)
target["labels"] = torch.tensor(labels, dtype=torch.int64)
# Apply transforms
if self.transforms is not None:
img = self.transforms(img)
return img, target
def __len__(self):
# Return the length of your dataset
return len(self.data)
# Load dataset
dataset = CustomDataset(transforms=transform)
# Split into train and validation sets
indices = torch.randperm(len(dataset)).tolist()
train_dataset = torch.utils.data.Subset(dataset, indices[:-50])
valid_dataset = torch.utils.data.Subset(dataset, indices[-50:])
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True,
collate_fn=lambda x: tuple(zip(*x)))
valid_loader = DataLoader(valid_dataset, batch_size=4, shuffle=False,
collate_fn=lambda x: tuple(zip(*x)))
现在设置优化器和训练循环。对于Faster R-CNN,通常使用SGD或Adam作为优化器。
# Move model to GPU if available
device = torch.device('cuda') if torch.cuda.is_available()
else torch.device('cpu')
model.to(device)
# Set up the optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9,
weight_decay=0.0005)
# Learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3,
gamma=0.1)
# Train the model
num_epochs = 10
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
# Training loop
for images, targets in train_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# Zero the gradients
optimizer.zero_grad()
# Forward pass
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# Backward pass
losses.backward()
optimizer.step()
train_loss += losses.item()
# Update the learning rate
lr_scheduler.step()
print(f'Epoch: {epoch + 1}, Loss: {train_loss / len(train_loader)}')
print("Training complete!")
训练后,您可以在验证集上评估模型,或将其用于新图像的推理。
# Set the model to evaluation mode
model.eval()
# Test on a new image
with torch.no_grad():
for images, targets in valid_loader:
images = list(img.to(device) for img in images)
predictions = model(images)
# Example: print the bounding boxes and labels for the first image
print(predictions[0]['boxes'])
print(predictions[0]['labels'])
要在新图像上运行推理,请执行以下操作:
import cv2
from PIL import Image
# Load image
img = Image.open("path/to/your/image.jpg")
# Apply the same transformation as for training
img = transform(img)
img = img.unsqueeze(0).to(device)
# Model prediction
model.eval()
with torch.no_grad():
prediction = model([img])
# Print the predicted bounding boxes and labels
print(prediction[0]['boxes'])
print(prediction[0]['labels'])
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!