并发编程(三)——线程间的共享和协作

并发编程(三)——线程间的共享和协作

一 线程间的共享

线程开始运行,拥有自己的栈空间,就如同一个脚本一样,按照既定的代码一步一步地执行,直到终止。但是,每个运行中的线程,如果仅仅是孤立地运行,那么没有一点儿价值,或者说价值很少,如果多个线程能够相互配合完成工作,包括数据之间的共享,协同处理事情。这将会带来巨大的价值。

1.1 synchronized内置锁

synchronized关键字:synchronized关键字允许你在某个代码块或者某个完整的方法中定义一个临界段。(确保多线程在某个时刻,只有一个线程处于方法或者同步块中)它保证了线程对变量访问的可见性和排他性,又称为内置锁机制。

1.1.1 对象锁和类锁

对象锁是用于对象实例方法,或者一个对象实例上的,类锁是用于类的静态方法或者一个类的class对象上的。我们知道,类的对象实例可以有很多个,但是每个类只有一个class对象,所以不同对象实例的对象锁是互不干扰的,但是每个类只有一个类锁。

但是有一点必须注意的是,其实类锁只是一个概念上的东西,并不是真实存在的,类锁其实锁的是每个类的对应的class对象。类锁和对象锁之间也是互不干扰的。

1.2 volatile,轻量级同步机制

volatile保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

volatile最适用的场景:一个线程写,多个线程读。

1.3 ThreadLocal

ThreadLocal为每个线程都提供了变量的副本,使得每个线程在某一时间訪问到的并非同一个对象,这样就隔离了多个线程对数据的数据共享。

1.3.1 ThreadLocal的使用

创建:

 public static final ThreadLocal threadLocal = new ThreadLocal(){
        @Override
        protected String initialValue() {
            return "initial";
        }
    };

void set(Object value):设置当前线程的线程局部变量的值。

public Object get():该方法返回当前线程所对应的线程局部变量。

public void remove(): 将当前线程局部变量的值删除,目的是为了减少内存的占用,该方法是JDK 5.0新增的方法。需要指出的是,当线程结束后,对应该线程的局部变量将自动被垃圾回收,所以显式调用该方法清除线程的局部变量并不是必须的操作,但它可以加快内存回收的速度。

protected Object initialValue():返回该线程局部变量的初始值,该方法是一个protected的方法,显然是为了让子类覆盖而设计的。这个方法是一个延迟调用方法,在线程第1次调用get()或set(Object)时才执行,并且仅执行1次。ThreadLocal中的缺省实现直接返回一个null。

1.3.2 ThreadLocal结构

并发编程(三)——线程间的共享和协作_第1张图片
每个Thread 维护一个 ThreadLocalMap,这个映射表的 key 是 ThreadLocal实例本身,value 是真正需要存储的 Object,也就是说 ThreadLocal 本身并不存储值,它只是作为一个 key 来让线程从 ThreadLocalMap 获取 value。

1.3.3 ThreadLocal的内存泄漏问题

并发编程(三)——线程间的共享和协作_第2张图片

仔细观察ThreadLocalMap,这个map是使用 ThreadLocal 的弱引用作为 Key 的,弱引用的对象在 GC 时会被回收。这样,当把threadlocal变量置为null以后,没有任何强引用指向threadlocal实例,所以threadlocal将会被gc回收。这样一来,ThreadLocalMap中就会出现key为null的Entry,就没有办法访问这些key为null的Entry的value,如果当前线程再迟迟不结束的话,这些key为null的Entry的value就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value,而这块value永远不会被访问到了,所以存在着内存泄露。

只有当前thread结束以后,current thread就不会存在栈中,强引用断开,Current Thread、Map value将全部被GC回收。最好的做法是不在需要使用ThreadLocal变量后,都调用它的remove()方法,清除数据。

其实考察ThreadLocal的实现,我们可以看见,无论是get()、set()在某些时候,调用了expungeStaleEntry方法用来清除Entry中Key为null的Value,但是这是不及时的,也不是每次都会执行的,所以一些情况下还是会发生内存泄露。只有remove()方法中显式调用了expungeStaleEntry方法。

 private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i)//用来清除Entry中Key为null的Value;
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

二 线程间的协作

线程之间相互配合,完成某项工作,比如:一个线程修改了一个对象的值,而另一个线程感知到了变化,然后进行相应的操作,整个过程开始于一个线程,而最终执行又是另一个线程。前者是生产者,后者就是消费者,这种模式隔离了“做什么”(what)和“怎么做”(How),简单的办法是让消费者线程不断地循环检查变量是否符合预期在while循环中设置不满足的条件,如果条件满足则退出while循环,从而完成消费者的工作。却存在如下问题:

  1. 难以确保及时性。
  2. 难以降低开销。如果降低睡眠的时间,比如休眠1毫秒,这样消费者能更加迅速地发现条件变化,但是却可能消耗更多的处理器资源,造成了无端的浪费。

2.1 等待/通知机制

是指一个线程A调用了对象O的wait()方法进入等待状态,而另一个线程B调用了对象O的notify()或者notifyAll()方法,线程A收到通知后从对象O的wait()方法返回,进而执行后续操作。上述两个线程通过对象O来完成交互,而对象上的wait()和notify/notifyAll()的关系就如同开关信号一样,用来完成等待方和通知方之间的交互工作。

2.1.1 一般使用的方法

notify():通知一个在对象上等待的线程,使其从wait方法返回,而返回的前提是该线程获取到了对象的锁,没有获得锁的线程重新进入WAITING状态。

notifyAll():通知所有等待在该对象上的线程。

wait():调用该方法的线程进入 WAITING状态,只有等待另外线程的通知或被中断才会返回.需要注意,调用wait()方法后,会释放对象的锁。

wait(long):超时等待一段时间,这里的参数时间是毫秒,也就是等待长达n毫秒,如果没有通知就超时返回

wait (long,int):对于超时时间更细粒度的控制,可以达到纳秒

2.1.2 等待和通知的标准范式

等待方遵循如下原则。

  1. 获取对象的锁。
  2. 如果条件不满足,那么调用对象的wait()方法,被通知后仍要检查条件。
  3. 条件满足则执行对应的逻辑。
    并发编程(三)——线程间的共享和协作_第3张图片

通知方遵循如下原则。

  1. 获得对象的锁。
  2. 改变条件。
  3. 通知所有等待在对象上的线程。
    在这里插入图片描述

在调用wait()、notify()系列方法之前,线程必须要获得该对象的对象级别锁,即只能在同步方法或同步块中调用wait()方法、notify()系列方法,进入wait()方法后,当前线程释放锁,在从wait()返回前,线程与其他线程竞争重新获得锁, 执行notify()系列方法的线程退出调用了notifyAll的synchronized代码块的时候后,他们就会去竞争。如果其中一个线程获得了该对象锁,它就会继续往下执行,在它退出synchronized代码块,释放锁后,其他的已经被唤醒的线程将会继续竞争获取该锁,一直进行下去,直到所有被唤醒的线程都执行完毕。

注意 本文参考书籍《精通java并发编程》和 腾讯课堂享学课堂笔记,只用于个人学习使用。

你可能感兴趣的:(java并发编程,并发编程)