在我们的查询分析变得越来越复杂时,LLM(大型语言模型)可能难以理解在某些场景下到底应该如何响应。为了提升性能,我们可以在提示中添加示例来指导LLM。在本文中,我们将演示如何为我们构建的LangChain YouTube视频查询分析器添加示例。
随着查询分析的复杂度增加,LLM可能无法准确识别用户意图并生成对应的高质量查询。通过在提示中添加具体示例,我们可以向模型提供引导,帮助其更好地理解用户需求并生成更加准确的查询。
提示示例(Prompt Examples)是一种通过在提示中添加具体输入和期望输出的方式,来指导LLM如何处理特定类型的问题。这种方法能够显著提升模型在特定任务上的表现。
先安装所需的依赖库:
# 安装依赖
# %pip install -qU langchain-core langchain-openai
设置环境变量,我们使用OpenAI的服务:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# 可选,取消注释以使用LangSmith跟踪运行
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
我们定义一个模型来表示查询的结构,包括一个主查询和多个子查询:
from typing import List, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
sub_queries_description = """\
如果原始问题包含多个不同的子问题,或者有更通用的相关问题需要回答以回答原始问题,请列出所有相关的子问题。
确保此列表全面并涵盖原始问题的所有部分。即使子问题中存在冗余也没关系。
确保子问题越具体越好。"""
class Search(BaseModel):
query: str = Field(..., description="应用于视频转录本的主要相似性搜索查询。")
sub_queries: List[str] = Field(default_factory=list, description=sub_queries_description)
publish_year: Optional[int] = Field(None, description="视频发布年份")
我们将结合LangChain构建提示模板和查询分析链:
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
system = """你是将用户问题转换为数据库查询的专家。
你可以访问一个包含关于构建LLM应用程序的教程视频的数据库。
给定一个问题,返回一系列优化以检索最相关结果的数据库查询。
如果有你不熟悉的缩写或词语,不要试图重新措辞。"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
MessagesPlaceholder("examples", optional=True),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
我们添加一些示例以指导模型如何处理复杂的查询:
examples = []
question = "What's chat langchain, is it a langchain template?"
query = Search(
query="What is chat langchain and is it a langchain template?",
sub_queries=["What is chat langchain", "What is a langchain template"],
)
examples.append({"input": question, "tool_calls": [query]})
question = "How to build multi-agent system and stream intermediate steps from it"
query = Search(
query="How to build multi-agent system and stream intermediate steps from it",
sub_queries=[
"How to build multi-agent system",
"How to stream intermediate steps from multi-agent system",
"How to stream intermediate steps",
],
)
examples.append({"input": question, "tool_calls": [query]})
question = "LangChain agents vs LangGraph?"
query = Search(
query="What's the difference between LangChain agents and LangGraph? How do you deploy them?",
sub_queries=[
"What are LangChain agents",
"What is LangGraph",
"How do you deploy LangChain agents",
"How do you deploy LangGraph",
],
)
examples.append({"input": question, "tool_calls": [query]})
更新提示模板和链以包含这些示例:
import uuid
from typing import Dict
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
def tool_example_to_messages(example: Dict) -> List[BaseMessage]:
messages: List[BaseMessage] = [HumanMessage(content=example["input"])]
openai_tool_calls = []
for tool_call in example["tool_calls"]:
openai_tool_calls.append(
{
"id": str(uuid.uuid4()),
"type": "function",
"function": {
"name": tool_call.__class__.__name__,
"arguments": tool_call.json(),
},
}
)
messages.append(
AIMessage(content="", additional_kwargs={"tool_calls": openai_tool_calls})
)
tool_outputs = example.get("tool_outputs") or [
"You have correctly called this tool."
] * len(openai_tool_calls)
for output, tool_call in zip(tool_outputs, openai_tool_calls):
messages.append(ToolMessage(content=output, tool_call_id=tool_call["id"]))
return messages
example_msgs = [msg for ex in examples for msg in tool_example_to_messages(ex)]
query_analyzer_with_examples = (
{"question": RunnablePassthrough()}
| prompt.partial(examples=example_msgs)
| structured_llm
)
让我们测试更新后的查询分析器:
query_analyzer_with_examples.invoke(
"what's the difference between web voyager and reflection agents? do both use langgraph?"
)
通过添加示例,我们可以看到查询结构得到了进一步的分解,生成了更精确的子查询。此外,通过更多的提示工程和示例调整,我们可以进一步提升查询生成的质量。
这种方法特别适用于需要精确查询生成的场景,如文档检索、技术问题解答等。通过提供示例,我们可以大大提升LLM在这些特定任务上的表现。
结束语:如果遇到问题欢迎在评论区交流。