构建一个完整的视觉Transformer(ViT)图像分类模型 VIT (vision transformer)图像分类

构建一个完整的视觉Transformer(ViT)图像分类模型 VIT (vision transformer)图像分类

根据提供的截图内容,我们可以看到一个名为VitNet的视觉Transformer(Vision Transformer,简称ViT)网络架构的部分代码。下面我将提供完整的VitNet类以及相关的辅助函数和训练流程示例代码。
构建一个完整的视觉Transformer(ViT)图像分类模型 VIT (vision transformer)图像分类_第1张图片
计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
B站项目实战:https://space.bilibili.com/364224477
如果文章对你有帮助的话, 欢迎评论 点赞 收藏
QQ+加:673276993
‍♂代做需求:@个人主页

VitNet 类定义
import torch
import torch.nn as nn
import math

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class VitNet(nn.Module):
    def __init__(self, image_size, patch_size, out_channel, in_channel=3, D=1024,
                 num_layers=4, MLP_hidden=64, num_head=3, head_channel=64,
                 dropout=0.1):
        super(VitNet, self).__init__()
        self.h, self.w = image_size
        self.p1, self.p2 = patch_size
        assert self.h % self.p1 == 0 and self.w % self.p2 == 0

        self.N = (self.h // self.p1) ** 2
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.D = D
        self.num_layers = num_layers

        self.patch_embedding = nn.Conv2d(in_channels=in_channel, out_channels=D, kernel_size=(patch_size[0], patch_size[1]), stride=(patch_size[0], patch_size[1]))
        self.positional_encoding = nn.Parameter(torch.randn(1, self.N + 1, D))

        self.cls_token = nn.Parameter(torch.randn(1, 1, D))
        self.dropout = nn.Dropout(p=dropout)

        self.blocks = nn.ModuleList([
            Block(dim=D, num_heads=num_head, mlp_ratio=MLP_hidden/D, qkv_bias=True, drop=0., attn_drop=0.)
            for _ in range(num_layers)])

        self.head = nn.Sequential(
            nn.LayerNorm(D),
            nn.Linear(D, out_channel)
        )

    def forward(self, x):
        x = self.patch_embedding(x)
        x = x.flatten(2).transpose(1, 2)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.positional_encoding[:, :x.size(1)]
        x = self.dropout(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.head(x[:, 0])
        return x

训练流程示例
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from GarbageClsDataset import GarbageClsDataset  # 假设这是你的数据集类

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置
image_size = (224, 224)
patch_size = (16, 16)
out_channel = 10  # 输出类别数
in_channel = 3
D = 1024
num_layers = 4
MLP_hidden = 64
num_head = 3
head_channel = 64
dropout = 0.1
batch_size = 32
learning_rate = 1e-4
epochs = 10

# 创建模型实例
model = VitNet(image_size=image_size, patch_size=patch_size, out_channel=out_channel, in_channel=in_channel, D=D,
               num_layers=num_layers, MLP_hidden=MLP_hidden, num_head=num_head, head_channel=head_channel, dropout=dropout)
model.to(device)

# 准备数据集
dataset = GarbageClsDataset(transform=ToTensor())  # 使用适当的transform
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 设置优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

for epoch in range(epochs):
    running_loss = 0.0
    correct_predictions = 0
    total_samples = 0
    
    for inputs, labels in dataloader:
        inputs, labels = inputs.to(device), labels.to(device)
        
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 统计指标
        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total_samples += labels.size(0)
        correct_predictions += (predicted == labels).sum().item()
    
    # 打印结果
    avg_loss = running_loss / len(dataloader)
    accuracy = correct_predictions / total_samples
    print(f'Epoch [{epoch+1}/{epochs}], Loss: {avg_loss:.4f}, Accuracy: {accuracy:.4f}')

请注意,上述代码是基于给定的信息构建的一个基本框架。你需要根据实际情况调整参数和数据集部分。此外,为了使代码完整运行,还需要实现GarbageClsDataset类以加载和预处理数据。
构建一个完整的视觉Transformer(ViT)图像分类模型。

1. 数据集类

首先,我们需要定义一个数据集类来加载和预处理图像数据。假设我们使用的是一个简单的图像分类数据集。

# src/utils/datasets.py
import os
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image

class GarbageClsDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.image_paths = []
        self.labels = []
        
        # 假设数据集目录结构为: root_dir/class_name/image.jpg
        for class_name in os.listdir(root_dir):
            class_dir = os.path.join(root_dir, class_name)
            for image_name in os.listdir(class_dir):
                image_path = os.path.join(class_dir, image_name)
                self.image_paths.append(image_path)
                self.labels.append(class_name)

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        label = self.labels[idx]
        image = Image.open(image_path).convert('RGB')
        
        if self.transform:
            image = self.transform(image)
        
        return image, label

2. 数据预处理和加载

定义数据预处理和加载的数据加载器。

# src/utils/data_loader.py
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Resize, Normalize
from .datasets import GarbageClsDataset

def get_data_loaders(root_dir, image_size, batch_size, num_workers=4):
    transform = Compose([
        Resize(image_size),
        ToTensor(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    dataset = GarbageClsDataset(root_dir, transform=transform)
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    
    return dataloader

3. ViT 模型定义

定义视觉Transformer(ViT)模型。

# src/models/vit.py
import torch
import torch.nn as nn
import math

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

class VitNet(nn.Module):
    def __init__(self, image_size, patch_size, out_channel, in_channel=3, D=1024,
                 num_layers=4, MLP_hidden=64, num_head=3, head_channel=64,
                 dropout=0.1):
        super(VitNet, self).__init__()
        self.h, self.w = image_size
        self.p1, self.p2 = patch_size
        assert self.h % self.p1 == 0 and self.w % self.p2 == 0

        self.N = (self.h // self.p1) * (self.w // self.p2)
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.D = D
        self.num_layers = num_layers

        self.patch_embedding = nn.Conv2d(in_channels=in_channel, out_channels=D, kernel_size=(patch_size[0], patch_size[1]), stride=(patch_size[0], patch_size[1]))
        self.positional_encoding = nn.Parameter(torch.randn(1, self.N + 1, D))

        self.cls_token = nn.Parameter(torch.randn(1, 1, D))
        self.dropout = nn.Dropout(p=dropout)

        self.blocks = nn.ModuleList([
            Block(dim=D, num_heads=num_head, mlp_ratio=MLP_hidden/D, qkv_bias=True, drop=0., attn_drop=0.)
            for _ in range(num_layers)])

        self.head = nn.Sequential(
            nn.LayerNorm(D),
            nn.Linear(D, out_channel)
        )

    def forward(self, x):
        x = self.patch_embedding(x)
        x = x.flatten(2).transpose(1, 2)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.positional_encoding[:, :x.size(1)]
        x = self.dropout(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.head(x[:, 0])
        return x

4. 训练和验证

定义训练和验证的主函数。

# src/train.py
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from models.vit import VitNet
from utils.data_loader import get_data_loaders
import time

def train_model(train_dataloader, val_dataloader, model, criterion, optimizer, num_epochs, device):
    best_val_accuracy = 0.0

    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        correct_predictions = 0
        total_samples = 0

        for inputs, labels in train_dataloader:
            inputs, labels = inputs.to(device), labels.to(device)

            # 前向传播
            outputs = model(inputs)
            loss = criterion(outputs, labels)

            # 反向传播和优化
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # 统计指标
            running_loss += loss.item()
            _, predicted = torch.max(outputs.data, 1)
            total_samples += labels.size(0)
            correct_predictions += (predicted == labels).sum().item()

        # 打印训练结果
        avg_train_loss = running_loss / len(train_dataloader)
        train_accuracy = correct_predictions / total_samples
        print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {avg_train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}')

        # 验证
        model.eval()
        val_correct_predictions = 0
        val_total_samples = 0

        with torch.no_grad():
            for inputs, labels in val_dataloader:
                inputs, labels = inputs.to(device)
                outputs = model(inputs)
                _, predicted = torch.max(outputs.data, 1)
                val_total_samples += labels.size(0)
                val_correct_predictions += (predicted == labels).sum().item()

        val_accuracy = val_correct_predictions / val_total_samples
        print(f'Validation Accuracy: {val_accuracy:.4f}')

        # 保存最佳模型
        if val_accuracy > best_val_accuracy:
            best_val_accuracy = val_accuracy
            torch.save(model.state_dict(), 'models/best_vit_model.pth')

if __name__ == "__main__":
    # 参数设置
    image_size = (224, 224)
    patch_size = (16, 16)
    out_channel = 10  # 输出类别数
    in_channel = 3
    D = 1024
    num_layers = 4
    MLP_hidden = 64
    num_head = 3
    head_channel = 64
    dropout = 0.1
    batch_size = 32
    learning_rate = 1e-4
    num_epochs = 10

    # 创建模型实例
    model = VitNet(image_size=image_size, patch_size=patch_size, out_channel=out_channel, in_channel=in_channel, D=D,
                   num_layers=num_layers, MLP_hidden=MLP_hidden, num_head=num_head, head_channel=head_channel, dropout=dropout)
    model.to(device)

    # 准备数据集
    train_dataloader = get_data_loaders('data/train', image_size, batch_size)
    val_dataloader = get_data_loaders('data/val', image_size, batch_size)

    # 设置优化器和损失函数
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    criterion = nn.CrossEntropyLoss()

    # 训练模型
    train_model(train_dataloader, val_dataloader, model, criterion, optimizer, num_epochs, device)

5. 详细解释
数据集类 (GarbageClsDataset)
数据加载器 (get_data_loaders)
ViT 模型 (VitNet)
训练和验证 (train_model)
6. 运行脚本
  • **训练模型**:
    python src/train.py
    
  • #### 7. 注意事项 1. **数据集路径**:确保数据集路径正确,特别是`data/train`和`data/val`。1. **模型配置**:确保模型配置文件路径正确。1. **图像大小**:`image_size`可以根据实际需求调整,通常使用224x224。1. **设备**:确保设备(CPU或GPU)可用。 #### 8. 总结

    通过以上步骤,你可以构建一个完整的视觉Transformer(ViT)图像分类模型,包括数据集的加载、模型的定义、训练和验证的完整流程。

你可能感兴趣的:(transformer,分类,深度学习)