《代码随想录第五十一天》——回文子串、最长回文子序列

《代码随想录第五十一天》——回文子串、最长回文子序列

本篇文章的所有内容仅基于C++撰写。

1. 回文子串

1.1 题目

回文子串
给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。

示例 1:
输入:s = “abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”

示例 2:
输入:s = “aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

提示:
1 <= s.length <= 1000
s 由小写英文字母组成

1.2 分析

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
    布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  2. 确定递推公式
    在确定递推公式时,就要分析如下几种情况。整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况:

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。即:
if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++; //统计回文子串的数量
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}
  1. dp数组如何初始化
    dp[i][j]初始化为false,以便于接下来的判断,是回文则更改为true,否则保留为false。

  2. 确定遍历顺序
    首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
    所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。

1.3 代码

  1. 原版
class Solution {
public:
    int countSubstrings(string s) {
        vector> dp(s.size(), vector(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};
  1. 简洁版
class Solution {
public:
    int countSubstrings(string s) {
        vector> dp(s.size(), vector(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
                    result++;
                    dp[i][j] = true;
                }
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

2. 最长回文子序列

2.1 题目

最长回文子串
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:
输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。

示例 2:
输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。

提示:
1 <= s.length <= 1000
s 仅由小写英文字母组成

2.2 分析

相比于上一题,回文子序列是可以跳过字符的。
动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。

  2. 确定递推公式
    在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

  • 如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

  • 如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
    – 加入s[j]的回文子序列长度为dp[i + 1][j]。
    – 加入s[i]的回文子序列长度为dp[i][j - 1]。
    那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

  1. dp数组如何初始化
    从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式计算不到 i 和 j 相同时候的情况(因为i和j会形成一个上三角矩阵,只有i<=j的值才有意义,例如dp[4][2]是找从下标4到下标2的字符串,这是没有意义的)。因此,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
vector> dp(s.size(), vector(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  1. 确定遍历顺序
    从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1]。所以遍历i的时候一定要从下到上遍历,从左向右遍历。

2.3 代码

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

你可能感兴趣的:(算法刷题,算法,数据结构,动态规划,leetcode)