《代码随想录第三十四天》——加油站、分发糖果、柠檬水找零、根据身高重建队列

《代码随想录第三十四天》——加油站、分发糖果、柠檬水找零、根据身高重建队列

本篇文章的所有内容仅基于C++撰写。

1. 加油站

1.1 题目

加油站
在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104

1.2 分析

需要记录加油与耗油的差值,只有加油量大于耗油量,汽车才能够到达下一个加油站。其次,如果有些加油站加油量有剩余,那么就可能填平某些加油量小于耗油量的加油站差值。因此我们希望汽车行驶的路途中尽可能都是加油量大于或等于耗油量的加油站,而将耗油量大于加油量的加油站尽可能放到后面去遍历。因此我们需要一个cursum来记录汽车在每个加油站的剩余油量总和,totalsum记录汽车全程的剩余油量,如果在第i个加油站时剩余油量总和为负,那么就无法开往下一个加油站,因此要将汽车的起点设为i+1,依次类推。如果汽车遍历完所有的加油站后,其总油量小于零,则说明无论如何都无法行驶完一圈。

1.3 代码

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int totalSum = 0;
        int start = 0;
        for (int i = 0; i < gas.size(); i++) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {   // 当前累加rest[i]和 curSum一旦小于0
                start = i + 1;  // 起始位置更新为i+1
                curSum = 0;     // curSum从0开始
            }
        }
        if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
        return start;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

2. 分发糖果

2.1 题目

分发糖果

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。

示例 1:
输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。

示例 2:
输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。

提示:
n == ratings.length
1 <= n <= 2 * 104
0 <= ratings[i] <= 2 * 104

2.2 分析

本题涉及正序遍历(元素与左元素比较,大于则在左元素的评分基础上加一,否则评分为一)和倒序遍历(元素与右元素比较,大于则在右元素的评分基础上加一,否则评分为一),注意一定要将两个顺序分开遍历,先判断所有元素与其左元素的关系,再判断所有元素与右元素的关系,最后取左右两侧的最大值作为最终答案。

2.3 代码

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] ) {
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
            }
        }
        // 统计结果
        int result = 0;
        for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

3. 柠檬水找零

3.1 题目

柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

示例 1:
输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。

示例 2:
输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。

提示:
1 <= bills.length <= 105
bills[i] 不是 5 就是 10 或是 2

3.2 分析

这个题有多个判断分支。如果是5元,直接收下;如果是10元,需要找5元;如果是20元,优先找10元和5元,如果10元不够,就找3个5元。核心在于优先花掉不易找零的大面值钱,优先保留可以给多种情况找零的小面值钱。

3.3 代码

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
        int five = 0, ten = 0, twenty = 0;
        for (int bill : bills) {
            // 情况一
            if (bill == 5) five++;
            // 情况二
            if (bill == 10) {
                if (five <= 0) return false;
                ten++;
                five--;
            }
            // 情况三
            if (bill == 20) {
                // 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
                if (five > 0 && ten > 0) {
                    five--;
                    ten--;
                    twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
                } else if (five >= 3) {
                    five -= 3;
                    twenty++; // 同理,这行代码也可以删了
                } else return false;
            }
        }
        return true;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

4. 根据身高重建队列

4.1 题目

根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:
输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:
1 <= people.length <= 2000
0 <= hi <= 106
0 <= ki < people.length
题目数据确保队列可以被重建

4.2 分析

先排身高,再排个数,因为个数是受身高影响而变化的副因素。将身高从高到低排序成一个队列,然后按照每个元素的k值放入队列中。因为按照身高从高到低排序,因此后面的元素只管尽量往前放(当k值相同时),因为后面的元素h值始终更小,放前放后都不影响之前h值大的元素。使用vector非常费时,因此可以使用链表。

  1. 排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2], [4,4]]
  2. 插入过程:
    插入[7,0]:[[7,0]]
    插入[7,1]:[[7,0],[7,1]]
    插入[6,1]:[[7,0],[6,1],[7,1]]
    插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
    插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
    插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
    此时就按照题目的要求完成了重新排列。

4.3 代码

  1. 数组
// 版本一
class Solution {
public:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        vector<vector<int>> que;
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1];
            que.insert(que.begin() + position, people[i]);
        }
        return que;
    }
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)
  1. 链表
// 版本二
class Solution {
public:
    // 身高从大到小排(身高相同k小的站前面)
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1]; // 插入到下标为position的位置
            std::list<vector<int>>::iterator it = que.begin();
            while (position--) { // 寻找在插入位置
                it++;
            }
            que.insert(it, people[i]);
        }
        return vector<vector<int>>(que.begin(), que.end());
    }
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)

你可能感兴趣的:(算法刷题,算法,数据结构)