llama-factory ||启智平台

1.在启智平台上找到没有安装tensorflow的镜像作为基础镜像

把llama-factory的github仓库进行下载,得到zip压缩包,上传到启智平台中,如下:

llama-factory ||启智平台_第1张图片

2. 执行命令如下

进入文件夹

cd LLaMA-Factory-main

更新pip

python -m pip install --upgrade pip

安装依赖:

pip install -e '.[torch,metrics]' -i https://pypi.tuna.tsinghua.edu.cn/simple/

解决依赖包冲突:

pip install --no-deps -e

进行环境验证:

lamafactory-cli train -h 

输出:

oot@i0435935b1bb4582a32b2a2767606073-task0-0:/tmp/code/cats2/LLaMA-Factory-main# lamafactory-cli train -h 
bash: lamafactory-cli: command not found
root@i0435935b1bb4582a32b2a2767606073-task0-0:/tmp/code/cats2/LLaMA-Factory-main# llamafactory-cli train -h 
usage: llamafactory-cli [-h] [--ray_run_name RAY_RUN_NAME] [--ray_storage_path RAY_STORAGE_PATH] [--ray_num_workers RAY_NUM_WORKERS] [--resources_per_worker RESOURCES_PER_WORKER]
                        [--placement_strategy {SPREAD,PACK,STRICT_SPREAD,STRICT_PACK}]

options:
  -h, --help            show this help message and exit
  --ray_run_name RAY_RUN_NAME, --ray-run-name RAY_RUN_NAME
                        The training results will be saved at `<ray_storage_path>/ray_run_name`. (default: None)
  --ray_storage_path RAY_STORAGE_PATH, --ray-storage-path RAY_STORAGE_PATH
                        The storage path to save training results to (default: ./saves)
  --ray_num_workers RAY_NUM_WORKERS, --ray-num-workers RAY_NUM_WORKERS
                        The number of workers for Ray training. Default is 1 worker. (default: 1)
  --resources_per_worker RESOURCES_PER_WORKER, --resources-per-worker RESOURCES_PER_WORKER
                        The resources per worker for Ray training. Default is to use 1 GPU per worker. (default: {'GPU': 1})
  --placement_strategy {SPREAD,PACK,STRICT_SPREAD,STRICT_PACK}, --placement-strategy {SPREAD,PACK,STRICT_SPREAD,STRICT_PACK}
                        The placement strategy for Ray training. Default is PACK. (default: PACK)

你可能感兴趣的:(服务器,llama)