自动驾驶的“大脑”:决策规划篇

文章目录

  • 一、决策规划技术概述
  • 二、决策规划技术结构体系
    • 1.分层递阶式体系结构
    • 2.反应式体系结构
    • 3.混合式体系结构
  • 三、决策规划系统的关键环节
    • 1.传感信息融合
    • 2.任务决策
    • 3.轨迹规划
    • 4.异常处理
  • 四、决策规划技术方法
    • 1.全局规划
      • (1) 基于状态空间的最优控制轨迹规划方法
      • (2)基于参数化曲线的轨迹规划方法
      • (3)基于基于系统特征的轨迹规划方法
    • 2.局部规划方法
      • (1)基于滚动时域优化的轨迹规划方法
      • (2)基于轨迹片段的运动规划方法
  • 路权

一、决策规划技术概述

智能汽车 ( Intelligent Vehicles) 是智能交通系统(Intelligent Transportation Systems) 的重要组成部分。智能汽车根据传感器输入的各种参数等生成期望的路径,并将相应的控制量提供给后续的控制器。所以决策规划是一项重要的研究内容,决定了车辆在行驶过程中车辆能否顺畅、准确得完成各种驾驶行为。

决策规划是自动驾驶的关键部分之一,它首先融合多传感信息,然后根据驾驶需求进行任务决策,接着在能避开可能存在的障碍物前提下,通过一些特定的约束条件,规划出两点间多条可选安全路径和,并在这些路径中选取一条最优的路径作为车辆行驶轨迹。决策规划按照划分的层面不同可分为全局规划和局部规划两种。全局规划是由获取到的地图信息,规划出一条在一些特定条件下的无碰撞最优路径;局部规划则是根据全局规划,在一些局部环境信息基础上,能避免撞上未知的障碍物,最终到达目标点的过程。

轨迹规划是智能汽车自主驾驶行为必须涉及到的一项研究,由于道路环境非常复杂,车辆系统本身是非完整系统,使得智能汽车在行驶过程中的运动轨迹规划问题变得复杂。传统的路径规划方法仅仅考虑了地形空间的几何约束,忽略了车辆的运动学和动力学特性,因而规划结果不一定是可行的,运动控制系统无法使得车辆准确得跟踪规划轨迹。近年来,国内外智能汽车的运动轨迹规划方法有了很大的改进,这些方法最大的改进就是考虑车辆实际行驶的环境条件并根据控制系统的需要,以生成最优的参考轨迹。

轨迹规划技术概述:路径规划问题最早出现在 20 世纪 60 年代末的人工智能机器人领域,特指考虑移动主体和障碍物之间的几何关系,找到一条不发生碰撞的静态路径,通常表示轮式移动机器人在笛卡尔坐标下位置和姿态的关系。运动轨迹规划是在静态路径规划的基础上考虑时间因素和车辆的运动学、动力学约束条件,并根据车辆当前的位姿以及传感器收集到周围环境的状态信息,考虑智能汽车的内在约束条件( 如非完整约束) 和车辆的运动学、动力学约束条件对轨迹生成的影响,规划出可行的参考轨迹。最后将轨迹以控制量的方式供给到后续的控制系统,使得车辆可以沿着相应的轨迹行驶,避免碰撞

二、决策规划技术结构体系

决策规划层是自主驾驶系统智能性的直接体现,对车辆的行驶安全性和整车性能起着决定性作用,以谷歌和斯坦福等为代表的众多企业和高校做出了大量研究。常见的决策规划体系结构有分层递阶式、反应式以及二者是混合式。

1.分层递阶式体系结构

分层递阶式体系结构是一个串联系统结构,如下图所示。在该结构中,智能驾驶系统的各模块之间次序分明,上一个模块的输出即为下一个模块的输入,因此又称为“感知-规划-行动”结构。当给定目标和约束条件后,规划决策就根据即时建立的局部环境模型和已有的全局环境模型决定出下一步的行动,进而依次完成整个任务。

自动驾驶的“大脑”:决策规划篇_第1张图片
由于该结构对任务进行了自上而下的分解,从而使得每个模块的工作范围逐层缩小,对问题的求解精度也就相应的逐层提高,具备良好的规划推理能力,容易实现高层次的智能控制。但是也存在一些缺点:(1) 它对全局环境模型的要求比较理想化,全局环境模型的建立是根据地图数据库先验信息和传感器模型的实时构造信息,所以它对传感器提出了很高的要求,与此同时,存在的计算瓶颈问题也不容忽视,从环境感知模块到执行模块,中间存在着延迟,缺乏实时性和灵活性;(2) 分层递阶式体系结构的可靠性不高,一旦其中某个模块出现软件或者硬件上的故障,信息流和控制流的传递通道就受到了影响,整个系统很有可能发生崩溃而处于瘫痪状态。

2.反应式体系结构

与分层递阶式体系结构不同,反应式体系采用并联结构,如图所示,每个控制层可以直接基于传感器的输入进行决策,因而它所产生的动作是传感器数据直接作用的结果,可突出“感知-动作”的特点,易于适应完全陌生的环境。其中,基于行为的反应式体系结构是反应式体系中最常用的结构。反应式结构最早于 1986 年由 Brooks,并成功应用于移动机器人。其主要特点是存在着多个并行的控制回路,针对各个局部目标设计对应的

你可能感兴趣的:(自动驾驶的“大脑”:决策规划篇)