50、深度学习-自学之路-自己搭建深度学习框架-11、添加RNN递归神经网络层为了浮现RNN的神经网络使用框架。

import numpy as np


class Tensor(object):

    def __init__(self, data,
                 autograd=False,
                 creators=None,
                 creation_op=None,
                 id=None):

        self.data = np.array(data)
        self.autograd = autograd
        self.grad = None
        if (id is None):
            self.id = np.random.randint(0, 100000)
        else:
            self.id = id

        self.creators = creators
        self.creation_op = creation_op
        self.children = {}

        if (creators is not None):
            for c in creators:
                if (self.id not in c.children):
                    c.children[self.id] = 1
                else:
                    c.children[self.id] += 1

    def all_children_grads_accounted_for(self):
        for id, cnt in self.children.items():
            if (cnt != 0):
                return False
        return True

    def backward(self, grad=None, grad_origin=None):
        if (self.autograd):

            if (grad is None):
                grad = Tensor(np.ones_like(self.data))

            if (grad_origin is not None):
                if (self.children[grad_origin.id] == 0):
                    raise Exception("cannot backprop more than once")
                else:
                    self.children[grad_origin.id] -= 1

            if (self.grad is None):
                self.grad = grad
            else:
                self.grad += grad

            # grads must not have grads of their own
            assert grad.autograd == False

            # only continue backpropping if there's something to
            # backprop into and if all gradients (from children)
            # are accounted for override waiting for children if
            # "backprop" was called on this variable directly
            if (self.creators is not None and
                    (self.all_children_grads_accounted_for() or
                     grad_origin is None)):

                if (self.creation_op == "add"):
                    self.creators[0].backward(self.grad, self)
                    self.creators[1].backward(self.grad, self)

                if (self.creation_op == "sub"):
                    self.creators[0].backward(Tensor(self.grad.data), self)
                    self.creators[1].backward(Tensor(self.grad.__neg__().data), self)

                if (self.creation_op == "mul"):
                    new = self.grad * self.creators[1]
                    self.creators[0].backward(new, self)
                    new = self.grad * self.creators[0]
                    self.creators[1].backward(new, self)

                if (self.creation_op == "mm"):
                    c0 = self.creators[0]
                    c1 = self.creators[1]
                    new = self.grad.mm(c1.transpose())
                    c0.backward(new)
                    new = self.grad.transpose().mm(c0).transpose()
                    c1.backward(new)

                if (self.creation_op == "transpose"):
                    self.creators[0].backward(self.grad.transpose())

                if ("sum" in self.creation_op):
                    dim = int(self.creation_op.split("_")[1])
                    self.creators[0].backward(self.grad.expand(dim,
                                                               self.creators[0].data.shape[dim]))

                if ("expand" in self.creation_op):
                    dim = int(self.creation_op.split("_")[1])
                    self.creators[0].backward(self.grad.sum(dim))

                if (self.creation_op == "neg"):
                    self.creators[0].backward(self.grad.__neg__())

                if (self.creation_op == "sigmoid"):
                    ones = Tensor(np.ones_like(self.grad.data))
                    self.creators[0].backward(self.grad * (self * (ones - self)))

                if (self.creation_op == "tanh"):
                    ones = Tensor(np.ones_like(self.grad.data))
                    self.creators[0].backward(self.grad * (ones - (self * self)))

                if (self.creation_op == "index_select"):
                    new_grad = np.zeros_like(self.creators[0].data)
                    indices_ = self.index_select_indices.data.flatten()
                    grad_ = grad.data.reshape(len(indices_), -1)
                    for i in range(len(indices_)):
                        new_grad[indices_[i]] += grad_[i]
                    self.creators[0].backward(Tensor(new_grad))

                if (self.creation_op == "cross_entropy"):
                    dx = self.softmax_output - self.target_dist
                    self.creators[0].backward(Tensor(dx))

    def __add__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data + other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="add")
        return Tensor(self.data + other.data)

    def __neg__(self):
        if (self.autograd):
            return Tensor(self.data * -1,
                          autograd=True,
                          creators=[self],
                          creation_op="neg")
        return Tensor(self.data * -1)

    def __sub__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data - other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="sub")
        return Tensor(self.data - other.data)

    def __mul__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data * other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="mul")
        return Tensor(self.data * other.data)

    def sum(self, dim):
        if (self.autograd):
            return Tensor(self.data.sum(dim),
                          autograd=True,
                          creators=[self],
                          creation_op="sum_" + str(dim))
        return Tensor(self.data.sum(dim))

    def expand(self, dim, copies):

        trans_cmd = list(range(0, len(self.data.shape)))
        trans_cmd.insert(dim, len(self.data.shape))
        new_data = self.data.repeat(copies).reshape(list(self.data.shape) + [copies]).transpose(trans_cmd)

        if (self.autograd):
            return Tensor(new_data,
                          autograd=True,
                          creators=[self],
                          creation_op="expand_" + str(dim))
        return Tensor(new_data)

    def transpose(self):
        if (self.autograd):
            return Tensor(self.data.transpose(),
                          autograd=True,
                          creators=[self],
                          creation_op="transpose")

        return Tensor(self.data.transpose())

    def mm(self, x):
        if (self.autograd):
            return Tensor(self.data.dot(x.data),
                          autograd=True,
                          creators=[self, x],
                          creation_op="mm")
        return Tensor(self.data.dot(x.data))

    def sigmoid(self):
        if (self.autograd):
            return Tensor(1 / (1 + np.exp(-self.data)),
                          autograd=True,
                          creators=[self],
                          creation_op="sigmoid")
        return Tensor(1 / (1 + np.exp(-self.data)))

    def tanh(self):
        if (self.autograd):
            return Tensor(np.tanh(self.data),
                          autograd=True,
                          creators=[self],
                          creation_op="tanh")
        return Tensor(np.tanh(self.data))

    def index_select(self, indices):

        if (self.autograd):
            new = Tensor(self.data[indices.data],
                         autograd=True,
                         creators=[self],
                         creation_op="index_select")
            new.index_select_indices = indices
            return new
        return Tensor(self.data[indices.data])

    def cross_entropy(self, target_indices):

        temp = np.exp(self.data)
        softmax_output = temp / np.sum(temp,
                                       axis=len(self.data.shape) - 1,
                                       keepdims=True)

        t = target_indices.data.flatten()
        p = softmax_output.reshape(len(t), -1)
        target_dist = np.eye(p.shape[1])[t]
        loss = -(np.log(p) * (target_dist)).sum(1).mean()

        if (self.autograd):
            out = Tensor(loss,
                         autograd=True,
                         creators=[self],
                         creation_op="cross_entropy")
            out.softmax_output = softmax_output
            out.target_dist = target_dist
            return out

        return Tensor(loss)

    def __repr__(self):
        return str(self.data.__repr__())

    def __str__(self):
        return str(self.data.__str__())
class Layer(object):

    def __init__(self):
        self.parameters = list()

    def get_parameters(self):
        return self.parameters

class Tanh(Layer):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input.tanh()


class Sigmoid(Layer):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input.sigmoid()


class CrossEntropyLoss(object):

    def __init__(self):
        super().__init__()

    def forward(self, input, target):
        return input.cross_entropy(target)
class Sequential(Layer):

    def __init__(self, layers=list()):
        super().__init__()

        self.layers = layers

    def add(self, layer):
        self.layers.append(layer)

    def forward(self, input):
        for layer in self.layers:
            input = layer.forward(input)
        return input

    def get_parameters(self):
        params = list()
        for l in self.layers:
            params += l.get_parameters()
        return params
class Embedding(Layer):

    def __init__(self, vocab_size, dim):
        super().__init__()

        self.vocab_size = vocab_size
        self.dim = dim

        # this random initialiation style is just a convention from word2vec
        self.weight = Tensor((np.random.rand(vocab_size, dim) - 0.5) / dim, autograd=True)

        self.parameters.append(self.weight)

    def forward(self, input):
        return self.weight.index_select(input)

class Linear(Layer):

    def __init__(self, n_inputs, n_outputs):
        super().__init__()
        W = np.random.randn(n_inputs, n_outputs) * np.sqrt(2.0 / (n_inputs))
        self.weight = Tensor(W, autograd=True)
        self.bias = Tensor(np.zeros(n_outputs), autograd=True)

        self.parameters.append(self.weight)
        self.parameters.append(self.bias)

    def forward(self, input):
        return input.mm(self.weight) + self.bias.expand(0, len(input.data))

class MSELoss(Layer):

    def __init__(self):
        super().__init__()

    def forward(self, pred, target):
        return ((pred - target) * (pred - target)).sum(0)
class SGD(object):

    def __init__(self, parameters, alpha=0.1):
        self.parameters = parameters
        self.alpha = alpha

    def zero(self):
        for p in self.parameters:
            p.grad.data *= 0

    def step(self, zero=True):

        for p in self.parameters:

            p.data -= p.grad.data * self.alpha

            if (zero):
                p.grad.data *= 0
import numpy

np.random.seed(0)

# data indices
data = Tensor(np.array([1, 2, 1, 2]), autograd=True)

# target indices
target = Tensor(np.array([0, 1, 0, 1]), autograd=True)

model = Sequential([Embedding(3, 3), Tanh(), Linear(3, 4)])
criterion = CrossEntropyLoss()

optim = SGD(parameters=model.get_parameters(), alpha=0.1)

for i in range(10):
    # Predict
    pred = model.forward(data)

    # Compare
    loss = criterion.forward(pred, target)

    # Learn
    loss.backward(Tensor(np.ones_like(loss.data)))
    optim.step()
    print(loss)


'''
1.3885032434928422
0.9558181509266037
0.6823083585795604
0.5095259967493119
0.39574491472895856
0.31752527285348264
0.2617222861964216
0.22061283923954234
0.18946427334830068
0.16527389263866668
'''

你可能感兴趣的:(深度学习-自学之路,深度学习,人工智能,自然语言处理,神经网络,rnn)