- 通义万相2.2:开启高清视频生成新纪元
Liudef06小白
特殊专栏AIGC人工智能人工智能通义万相2.2图生视频
通义万相2.2:开启高清视频生成新纪元2025年7月28日,中国AI领域迎来里程碑时刻——通义万相团队正式开源其革命性视频生成模型Wan2.2的核心权重,这标志着开源社区首次获得支持720P高清视频生成的先进模型架构。一、架构革新:混合专家系统1.1MoE视频扩散架构通义万相2.2首次将混合专家(MoE)架构引入视频扩散模型,通过双专家系统实现计算效率与模型容量的平衡:classMoEVideoD
- Pandas:数据科学的超级瑞士军刀
科技林总
DeepSeek学AI人工智能
**——从零基础到高效分析的进化指南**###**一、Pandas诞生:数据革命的救世主****2010年前的数据分析噩梦**:```python#传统Python处理表格数据data=[]forrowincsv_file:ifrow[3]>100androw[2]=="China":data.append(float(row[5])#代码冗长易错!```**核心痛点**:-Excel处理百万行崩
- 使用Python操作Excel,删重复数据及keep参数用法并保存的例子
白帽黑客艾登
pythonexcel开发语言Python编程Python学习技能分享
01Ex按列标题删重复的数据解析:我们使用了pandas库读取Excel文件,并使用drop_duplicates()函数删除重复数据。其中,subset参数指定了删除重复数据的列(列名),keep参数指定了保留哪个重复记录(默认为第一个记录)。inplace=True参数表示在原始数据上进行操作。最后,我们使用to_excel()函数将处理后的数据,保存到一个新的Excel文件中,其中index
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 实践篇:构建基于LLM与本地Pandas的混合式数据分析引擎
超人阿亚
pandas数据分析数据挖掘
公众号:dify实验室基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。在上一篇《思路探索:当大型语言模型遇见数据分析的现实挑战》中,我们阐述了团队确立的技术路线:利用大型语言模型(LLM)作为自然语言到代码的“翻译器”,并结合PythonPandas库作为后端的高性能“计算核心”。本文将从工程实践的角度,详细
- python小工具合集
Aronup
pythonexcel开发语言
小工具合集1.python切分excel2.python检查excel输出每列最大长度[目录下所有文件or目录下每个文件]1.python切分excel"""@Project:pythonProject@File:splitFile.py@IDE:PyCharm@Author:alice@Date:2025/3/2113:48"""importpandasaspdimportosdefsplit_
- pandas.to_sql mysql_pandas to_sql
weixin_39929595
pandas.to_sqlmysql
实例:importpymysqlimportpandasaspdimportnumpyasnpfromsqlalchemyimportcreate_enginedf=pd.DataFrame([[1,"Bob",0],[2,"Kim",1]],columns=["id","name","sex"])dfidnamesex01Bob012Kim1fromsqlalchemyimportcreate_
- pandas 读取sqlserver_Python中pandas函数操作数据库
将pandas的DataFrame数据写入MySQL+sqlalchemypython强大的处理数据的能力很大一部分来自Pandas,pandas不仅限于读取本地的离线文件,也可以在线读取数据库的数据,处理后再写回数据库中。pandas主要是以sqlalchemy方式与数据库建立链接,支持Mysql、postgresql、Oracle、MSSQLServer、SQLite等主流数据库。一:创建链接
- DataFrame(数据框)
追逐此刻
SQLsql
一种二维表格型数据结构,类似于电子表格(如Excel)或SQL表,由行(记录)和列(字段)组成。它是数据分析、机器学习和科学计算中最常用的数据结构之一,尤其在Python的Pandas库中被广泛使用。1.DataFrame的核心特点特点说明二维结构类似表格,有行(记录)和列(字段)。列名(ColumnNames)每列有一个名称(如name,age,salary)。行索引(Index)每行有一个索引
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 【Python高阶开发】2. Dask分布式加速实战:TB级生产日志分析效率提升指南
摘要:随着工业4.0的深入推进,工业生产日志数据量呈指数级增长,某汽车制造厂日均产生2TB生产日志,传统单机Pandas处理面临内存不足、耗时过长、资源利用率低三大瓶颈。本文基于Dask分布式计算框架,构建工业级日志分析解决方案,通过“集群部署-高效加载-数据处理-性能优化”四步法,实现日志分析效率5倍提升。详细阐述Dask核心原理(任务调度、延迟计算、数据分区),对比单机与分布式架构差异,提供从
- 学习日记-人工智能导论2-绪论2
Harrison_Huuu
学习日记-人工智能导论学习人工智能
目录1.绪论1.3人工智能的历史1.3.1人工智能的诞生(1943—1956)1.3.2早期热情高涨,期望无限(1952—1969)1.3.3一些现实(1966—1973)1.3.4专家系统(1969—1986)1.3.5神经网络的回归(1986—现在)1.3.6概率推理和机器学习(1987—现在)1.3.7大数据(2001—现在)1.3.8深度学习(2011—现在)1.4目前的先进技术1.5人工
- 如何在 Python 中高效处理大数据:Pandas 的实战技巧
程序员威哥
python大数据pandas
随着数据量的不断增大,Python成为数据科学和数据分析领域最受欢迎的编程语言之一。Pandas,作为Python中处理数据的强大库,以其简洁易用和强大的功能,成为数据分析的首选工具。然而,随着数据量的急剧增长,如何高效地处理和分析大数据成为了一个关键问题。本文将深入解析如何利用Pandas高效处理大数据,探索一些实用的技巧,帮助你提升数据处理性能和优化内存使用,让你能够在大数据分析中游刃有余。1
- python学习DAY4打卡
星仔编程
python学习打卡学习
DAY4缺失值的处理题目:初识pandas库与缺失数据的补全pandas是Python里一个强大且广泛使用的开源数据分析与处理库按照示例代码的要求,去尝试补全信贷数据集中的数值型缺失值打开数据(csv文件、excel文件)查看数据(尺寸信息、查看列名等方法)查看空值众数、中位数填补空值利用循环补全所有列的空值完成后在py文件中独立完成一遍,并且利用debugger工具来查看属性(不借助函数显式查看
- python学习Day5打卡
WYH49
学习
day5离散特征的独热编码先按照示例代码过一遍,然后完成下列题目现在在py文件中一次性处理data数据中所有的连续变量和离散变量1.读取data数据importpandasaspddata=pd.read_csv(r"C:\Users\LENOVO\Desktop\daim\data.csv")fordesribe_featuresindata.columns:ifdata[desribe_fea
- python学习DAY22打卡
星仔编程
python学习打卡学习
作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码kaggle泰坦尼克号人员生还预测importwarningswarnings.filterwarnings("ignore")#忽略警告信息#数据处理清洗包importpandasaspdimportnumpyasnpimportrandomasrnd#可视化包importseabornassnsimportmatp
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- pandas库 DataFrame的常见操作
目录一.Pandas库的核心特点与应用场景1.表格数据处理2.与NumPy的区别3.数据转换二.Pandas与OpenPyXl的对比三.DataFrame与Series数据类型四.DataFrame常用操作排序:df.sort_values(by='列名',ascending=False)按指定列降序排序,整行数据同步调整,当参数值为ture时则为升序排序或默认升序排序数据替换:df['列名'].
- 数据分析利器:Pandas数据处理实战指南
程序员Bears
Python全栈成长笔记数据分析pandas数据挖掘
一、Pandas简介:数据分析的瑞士军刀Pandas是Python数据分析的核心库,它提供了两种主要数据结构:Series:一维带标签数组DataFrame:二维表格型数据结构(类似Excel表格)importpandasaspd#创建示例DataFramedata={'姓名':['张三','李四','王五'],'年龄':[25,30,28],'城市':['北京','上海','广州']}df=pd
- Python 玩转 Excel:四大神器横向评测与实战指南
在数据驱动的时代,每天有超过3亿人使用Excel处理数据,但面对复杂报表、批量处理等场景时,传统操作往往力不从心。Python作为数据处理的瑞士军刀,与Excel的深度整合能力正在掀起一场办公效率革命。本文将深入剖析四大主流Python-Excel工具的技术特性,带您解锁自动化办公的终极形态。一、四大核心工具特性速览1.Pandas(数据分析之王)作为NumFOCUS基金会支持的项目,Pandas
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- pandas 的数据类型简单介绍-Series 与 DataFrame
江南野栀子
#Python数据分析pythonpandas数据分析
目录1.Series1.1Series定义1.2Series构造2.DataFrame2.1DataFrame定义2.2DataFrame构造2.2.1使用pandas.DataFrame函数2.2.2使用pandas.DataFrame.from_dict函数2.2.3使用pandas.DataFrame.from_records函数2.2.4从csv、Excel、txt、mysql等等处获得数
- Python 数据分析课程学习总结:从理论到实践的进阶之路
作为一名大学生,在2024-2025学年下学期接触《Python数据分析》这门课程时,我对数据分析的认知还停留在“用Excel做简单统计”的层面。但经过一学期的学习,我不仅掌握了Python数据分析的核心工具,更培养了用数据思维解决问题的能力。以下是我从知识吸收、实践打磨到思维重塑的完整学习总结。一、工具学习:从陌生到熟悉的跨越(一)Pandas:数据处理的得力助手最开始接触Pandas的时候,感
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs